
ARES
The Autonomous Robotic Environmental Sensor

by
Benjamin M. Dyer

A Thesis
presented to

The University of Guelph

In partial fulfillment of requirements
for the degree of

Masters of Applied Science
in

Engineering

Guelph, Ontario, Canada
© Benjamin M. Dyer, April, 2021

ABSTRACT

ARES

THE AUTONOMOUS ROBOTIC ENVIRONMENTAL SENSOR

Benjamin M. Dyer Advisors:

University of Guelph, 2021 Dr. Mohammad Biglarbegain

Dr. Amir Aliabadi

Sensing the indoor environment is a complicated task accomplished through the use of multi-

ple expensive sensors. In order to reduce costs, the Autonomous Robotic Environmental Sensor

(ARES) is developed. ARES is a custom-designed omniwheel robot with high modularity, allow-

ing many environmental sensors to be mounted to it. For navigation of an indoor environment,

feedback linearization and sliding mode controllers are developed using a kinematic model, modi-

fied to include wheel slip. Testing shows the sliding mode controller provides the best performance

for indoor environmental sensing.

ARES is used to measure environmental variables in a large laboratory. Measurements are

collected at multiple positions periodically over a diurnal cycle. Environmental statistics and pre-

dictions of thermal comfort derived from collected data are presented, showing that ARES is ca-

pable of taking meaningful measurements of the environment at a fraction of the cost of stationary

sensors.

iii

ACKNOWLEDGEMENTS

My thanks to both Dr. Biglarbegian and Dr. Aliabadi for their continuous teaching, guidance, and

support throughout my masters. I thank Dana and my family for their continuous support through-

out my education. I thank Trevor Smith for being around to bounce ideas off and encouraging

me to always work hard. I thank Elyse Hill for always answering controls questions and helping

immensely with initial edits. Finally, my thanks goes out to Andrew Newton and the rest of the

ICE Lab, AICV Lab, and AIR Lab members, who were always there to teach me topics I was new

to.

iv

TABLE OF CONTENTS

Abstract . ii

Acknowledgements . iii

Table of Contents . iv

List of Tables . vii

List of Figures . ix

Abbreviations . x

Symbols . xii

Greek Symbols . xiii

List of Appendices . xiv

1 Introduction . 1
1.1 Literature Review . 2

1.1.1 Omniwheel Robots . 2
1.1.2 Controllers . 4
1.1.3 Mobile Indoor Environmental Sensing . 5
1.1.4 Path Planning . 7
1.1.5 Environmental Mapping . 9
1.1.6 Thermal Comfort . 10

1.2 Research Gaps . 11
1.3 Objectives . 12
1.4 Structure of the Thesis . 12

2 Background . 14
2.1 Controllers . 14

2.1.1 PID Controller . 15
2.1.2 Feedback Linearization . 16
2.1.3 Sliding Mode Control . 17

v

2.2 Environmental Variables . 19
2.2.1 Environment Specific Variables . 20
2.2.2 Integral Time Scale . 21

2.3 PMV-PPD Model . 22

3 Platform Development . 26
3.1 System Components . 26
3.2 Mechanical Subsystem . 28

3.2.1 Robot Frame . 29
3.2.2 Wheel Drive . 29
3.2.3 Levels . 32

3.3 Electrical Subsystem . 33
3.3.1 Power Delivery . 33

3.3.1.1 12V DC Buck Converter . 34
3.3.1.2 3.3/5V Linear Regulators . 35

3.3.2 Control System . 36
3.3.2.1 Motor Driver Board . 37

3.4 Sensory Subsystem . 39
3.4.1 Ultra-Sonic Anemometer . 39
3.4.2 Relative Humidity and Temperature Sensor 40
3.4.3 CR6 Data-logger . 40

4 Control Design . 41
4.1 Kinematic and Dynamic Models . 41

4.1.1 Kinematic Model . 41
4.1.2 Motor Dynamics . 44

4.2 Controllers . 45
4.2.1 Feedback linearization . 46
4.2.2 Sliding Mode Control . 47
4.2.3 PID Controller for Motors . 49

4.3 Physical Parameters . 49
4.4 Controller Verification . 50

4.4.1 Drift Compensation . 51
4.4.2 Rose Trajectory . 57
4.4.3 Random points . 59

5 Environmental Analysis . 62
5.1 Experimental Set-up . 62

5.1.1 Datalogger and Instrument Set-up . 65
5.1.2 Path Planning . 66
5.1.3 Experiment . 67

5.2 Data Processing . 68
5.3 Results . 69

vi

5.3.1 Averages . 70
5.3.2 Variances and Covariances . 75

5.4 Thermal Comfort . 81
5.5 Platform viability . 91

6 Conclusion and Future Work . 92
6.1 Conclusion . 92
6.2 Future Work . 93

References . 95

A Chapter 3 Supplement . 100
A.1 Electrical Schematics . 100

B Chapter 4 Supplement . 105
B.1 Sliding Mode Controller - Teensy Code . 105
B.2 Feedback Linearization Controller - Teensy Code 118
B.3 Vicon Data Collection - Matlab Code . 130

C Chapter 7 Supplement . 141
C.1 Covariances . 141
C.2 Wiring Diagrams . 144
C.3 Codes . 144

C.3.1 Trajectory Stitch.py . 144
C.3.2 Position CR6 Joiner.py . 146
C.3.3 YOUNG81000 HMP60 10Hz.CR6 . 149
C.3.4 Analysis.py . 151

vii

LIST OF TABLES

4.1 Parameters required for the motor dynamic and omniwheel kinematic models. . . . 50
4.2 Time independent RMSE for each dimension during parametric rose trajectory. . . 57

5.1 List of metabolism (met) and clothing (clo) levels used for each test case. 82

viii

LIST OF FIGURES

1.1 Vex Robotics Mecanum wheel . 3
1.2 Vex Robotics 4” Swedish wheel . 4

3.1 ARES set up for thermal comfort measurements. 27
3.2 Top-down view of ARES’ frame with electronics and wheel drives attached. 30
3.3 View of the wheel drive from the bottom of ARES. 31
3.4 12V DC Buck Converter PCB layout. 34
3.5 Motor driver PCB layout. 38

4.1 Diagram of a Swedish wheel and its corresponding coordinates in the robot’s frame
of reference (Siegwart et al., 2011). 42

4.2 Block diagram of feedback linearization controller with a PID controller on each
wheel. 45

4.3 Block diagram of sliding mode controller with a PID controller on each wheel. . . . 45
4.4 Position of the robot at each test point over the path moving in the positive x direction. 52
4.5 Error as a function of time, linear fit shows positional error as a function time

corresponding to a drift of 0.0199 m m−1. 53
4.6 Position of the robot at each test point over the path moving in the positive y direction. 54
4.7 Error as a function of time, linear fit shows positional error as a function time

corresponding to a drift of 0.0259 m m−1. 54
4.8 Position of the robot at each test point over the path moving in the positive x direc-

tion after drift compensation. 55
4.9 Position of the robot at each test point over the path moving in the positive y direc-

tion after drift compensation. 56
4.10 Omniwheel robot path compared to desired path using Feedback Linearization. . . 58
4.11 Omniwheel robot path compared to desired path using SMC. 59
4.12 Feedback linearization controller error in translational and rotational positions as a

function of time when stabilizing to random positions. 60
4.13 Sliding mode controller error in position as a function of time when stabilizing to

random positions. 61

5.1 Map of the Mechatronics lab with robot start location, positions to measure the
environment, and the position of the window fan. 63

5.2 Average U component of the wind velocity vector over a diurnal cycle. 70
5.3 Average V component of the wind velocity vector over a diurnal cycle. 71

https://www.vexrobotics.com/Mecanum-wheels.html
https://www.vexrobotics.com/omni-wheels.html

ix

5.4 Average W component of the wind velocity vector over a diurnal cycle. 71
5.5 Average ultrasonic temperature over a diurnal cycle. 72
5.6 Average wind speed over a diurnal cycle. 73
5.7 Average HMP60 temperature over a diurnal cycle. 74
5.8 Average relative humidity over a diurnal cycle. 75
5.9 Normalized wind velocity vector variance in the x direction over a diurnal cycle. . . 76
5.10 Normalized wind velocity variance in the y direction over a diurnal cycle. 77
5.11 Normalized wind velocity vector variance in the z direction over a diurnal cycle. . . 78
5.12 Normalized ultrasonic temperature variance over a diurnal cycle. 79
5.13 Normalized turbulent kinetic energy over a diurnal cycle. 80
5.14 Normalized covariance between the wind velocity in the z direction and ultrasonic

temperature over a diurnal cycle. 81
5.15 PMV with metabolism = 1.1 met and clothing = 0.57 clo over a diurnal cycle. . . . 83
5.16 PDD with metabolism = 1.1 met and clothing = 0.57 clo over a diurnal cycle. . . . 83
5.17 PMV with metabolism = 1.1 met and clothing = 0.74 clo over a diurnal cycle. . . . 84
5.18 PDD with metabolism = 1.1 met and clothing = 0.74 clo over a diurnal cycle. . . . 85
5.19 PMV with metabolism = 1.1 met and clothing = 0.96 clo over a diurnal cycle. . . . 86
5.20 PDD with metabolism = 1.1 met and clothing = 0.96 clo over a diurnal cycle. . . . 86
5.21 PMV with metabolism = 1.7 met and clothing = 0.57 clo over a diurnal cycle. . . . 87
5.22 PDD with metabolism = 1.7 met and clothing = 0.57 clo over a diurnal cycle. . . . 88
5.23 PMV with metabolism = 1.7 met and clothing = 0.74 clo over a diurnal cycle. . . . 89
5.24 PDD with metabolism = 1.7 met and clothing = 0.74 clo over a diurnal cycle. . . . 89
5.25 PMV with metabolism = 1.7 met and clothing = 0.96 clo over a diurnal cycle. . . . 90
5.26 PDD with metabolism = 1.7 met and clothing = 0.96 clo over a diurnal cycle. . . . 90

A.1 12V buck converter schematic. 101
A.2 12V buck converter headers schematic. 102
A.3 3.3/5V linear regulator schematic. 103
A.4 Motor driver board schematic. 104

C.1 Normalized covariance between x and y wind velocity components over a diurnal
cycle. 141

C.2 Normalized covariance between x and z wind velocity components over a diurnal
cycle. 142

C.3 Normalized covariance between y and z wind velocity components over a diurnal
cycle. 142

C.4 Normalized covariance between the x wind velocity component and ultrasonic
temperature over a diurnal cycle. 143

C.5 Normalized covariance between the y wind velocity component and ultrasonic tem-
perature over a diurnal cycle. 143

C.6 Wiring diagram of Young81000 ultrasonic anemometer, HMP60 temperature and
relative humidity sensor, and CR6 data-logger. 144

x

ABBREVIATIONS

ARES Autonomous Robotic Environmental Sensor

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers

CAD Computer Assisted Design

CoR Center of Rotation

CFD Computational Fluid Dynamics

C-space Configuration space

FIFO First In First Out

GA Genetic Algorithm

GPIO General Purpose Input/Output

HVAC Heating, Ventilation, and Air Conditioning

I2C Inter-Integrated Circuit

IR Infra-Red

LIDAR Light Detection And Ranging

MRT Mean Radiant Temperature

PMV Predicted Mean Vote

PID Proportional-Integral-Derivative

PPD Predicted Percent Dissatisfied

PSO Particle Swarm Optimization

PWM Pulse Width Modulation

RE Random Error

xi

RH Relative Humidity

RMSE Root Mean Squared Error

SE Systematic Error

SLAM Simultaneous Localization and Mapping

SMC Sliding Mode Control

TKE Turbulent Kinetic Energy

VGRAPH Visibility Graph

xii

SYMBOLS

b Motor viscous friction N m s
e Error vector
fcl Clothing area factor
hc Coefficient of convection W m−2 K−1

i Current A
Icl Clothing level clo
J Moment of inertia kg m2

k Turbulent kinetic energy m2 s−2

K Motor constant N m A−1

l Wheel to robot center distance m
L Thermal Load

Inductance H
M metabolic rate met
pa Water vapor pressure Pa
r Robot wheel radius m
R Resistance Ω
S Wind speed m s−1

T Period s
T Temperature °C or K
t Time s
ta Ambient air temperature K
tcl Temperature of a clothed surface K
tL Large eddy turnover time s
tr Mean radiant temperature K
U Wind velocity component in the x direction m s−1

U Time-mean Eulerian velocity m s−1

vs Slip velocity m s−1

vs Slip velocity vector m s−1

vwheel Wheel translational velocity m s−1

V Wind velocity component in the y direction m s−1

Lyapunov function
Voltage V

W Work met
Wind velocity component in the z direction m s−1

xiii

GREEK SYMBOLS

α Angular position of wheel w.r.t. the robot rad
β Angular offset rad
γ Angular position of rollers rad
φ Robot wheel angular position rad
Λ Eulerian integral length scale m
σ Sliding surface (manifold)
τi Eulerian integral time scale s
θ Angular position rad
ξI Robot state vector in the global frame
ξd Robot desired state vector in the global frame

xiv

LIST OF APPENDICES

Appendix A: Chapter 3 Supplement
Appendix B: Chapter 4 Supplement
Appendix C: Chapter 7 Supplement

Chapter 1

Introduction

Environmental sensing encompasses a vast range of measurement types and scales. Measurements

may include wind velocities, temperature, soil moisture, long and short wave radiation, humid-

ity, sound levels, pollution, and more. Measurements also range drastically from the small-scale

measurements of airspeed and temperature in a duct to large-scale measurements of wind, tem-

perature, and humidity profiles throughout the atmosphere. Remote sensing aside, measurements

of the atmosphere, both indoors and outdoors, are accomplished using sensor stations. By using

multiple stations, a larger area of the environment can be measured. However, to make accurate

spatial measurements, a dense sensor network is required, which is often impractical due to both

the monetary cost to set up and environmental changes due to the sensors. As a replacement to

dense sensor networks, a sensor station can be mounted on a mobile platform in order to gain high

spatial resolution at the expense of temporal resolution.

In order to build a mobile sensing station, an appropriate mobile platform needs to be de-

veloped. Some sensors require knowledge of their orientation (in particular, anemometers that

detect wind direction); therefore, a platform that can maintain angular position while traversing

the environment is useful. Most land-based robots cannot accomplish this as they must turn to

change directions; however, omniwheel robots do not suffer from this constraint, making them an

1

improved option for a mobile sensing station.

The following section will review previous work on omniwheel robots, methods to control

them, path planning algorithms, mobile environmental sensors, mapping of indoor environments,

and methods for determining thermal comfort.

1.1 Literature Review

1.1.1 Omniwheel Robots

Omniwheel robots utilize omnidirectional wheels, making them holonomic, allowing the robot to

utilize each degree of freedom separately (Borisov et al., 2015). Several wheel designs have been

proposed and tested, with Swedish and Mecanum omniwheels being the most readily available.

Both wheel types use a main wheel with several smaller rollers attached. The Mecanum wheel

attaches the rollers at 45 degrees to the wheel’s plane, while Swedish wheels attach the rollers at

90 degrees to the wheel’s plane.

Mecanum wheels, displayed in Figure 1.1, are typically used in a four-wheel configuration

(Borisov et al., 2015; Kilin et al., 2017). The Mecanum wheel rollers create a secondary force

away from the direction of rolling. Making the in-line wheels’ rollers face opposite directions

allows for a holonomic configuration. This configuration enables smoother rolling compared to

other omniwheels; however, since the robot uses four wheels, suspension is required to guarantee

each wheel can provide the same force on the robot and minimize slip. Additionally, the robots’

rectangular shape makes them ideal for use in swarms, where the robots can form convoys and

blocks to work together to move large and heavy objects (Lin and Shih, 2013). A major disadvan-

tage of the Mecanum wheel is the inefficiency it introduces to the robot. Since the wheels’ force

vectors are always facing different directions, the wheels are always working against each other,

increasing power consumption and decreasing efficiency.

2

Figure 1.1: Vex Robotics Mecanum wheel1.

The 90-degree Swedish wheel, seen in Figure 1.2, can be configured to provide better energy

efficiency when compared to Mecanum wheels (Liu et al., 2007). Placing four Swedish wheels ra-

dially about the robot makes it possible to create a holonomic configuration capable of utilizing the

entire force produced by two wheels by allowing the other two wheels to act as passive rollers. In

fact, if two opposing wheels are made completely passive, the robot becomes a type of differential

drive robot (Zobova and Tatarinov, 2008). The use of four wheels requires the implementation of

suspension in order to guarantee all wheels will provide an equal force on the robot. Suspension

can be avoided by using three Swedish wheels equally spaced radially about the robot; however,

this comes at the cost of efficiency since any translational movement will require some of each of

the wheels’ force vectors to counteract each other. A major issue with the Swedish wheel is an

increase in vibrations and slippage due to the roller design creating avoidable non-linearities and

injecting noise in the system, which must be accounted for when describing the system dynamics

(Stonier et al., 2007; Bramanta et al., 2017).

1https://www.vexrobotics.com/mecanum-wheels.html

3

https://www.vexrobotics.com/Mecanum-wheels.html

Figure 1.2: Vex Robotics 4” Swedish wheel2.

1.1.2 Controllers

All forms of omniwheel robots are non-linear systems, requiring the implementation of non-linear

control strategies. A large number of controllers have been developed for different configurations

of omniwheel robots. As will be discussed in greater detail in Chapter 4, the main controller

considered in this thesis is a sliding mode controller. Therefore, several studies with this control

design were reviewed.

Sun et al. (2020) developed a non-singular terminal sliding mode controller for a four-wheel-

drive Mecanum wheel omnidirectional mobile robot to achieve path-tracking. The controller was

able to achieve superior tracking precision and higher robustness compared to conventional sliding

mode control. However, it lacked the ability to account for drift due to slip and had increased

chatter compared to conventional sliding mode control.

2https://www.vexrobotics.com/omni-wheels.html

4

https://www.vexrobotics.com/omni-wheels.html

Alakshendra and Chiddarwar (2016) developed an adaptive sliding mode controller for a four-

wheel-drive Mecanum wheel omnidirectional mobile robot using both kinematic and dynamic

models of the robot. The adaptive control is able to provide acceptable tracking when sensor

fusion between visual tracking and an on-board inertial measurement unit is used. The control

scheme is also able to reduce chatter in comparison to a conventional sliding mode controller.

Zhang et al. (2019) focused on developing energy-optimal motion control for a four-wheel

Mecanum mobile robot. A power consumption model is proposed in order to determine and reduce

power consumption. Through simulation and experimentation, the model was shown to be over

95% accurate in simple scenarios; however, more investigation is required for robots moving on

an incline and with an offset center of gravity due to load.

A major issue with the control of omniwheel robots is the assumption that the force of the

wheel originates from the center of the wheel; however, this is usually not the case as the contact

point deviates from the center of the wheel throughout each rotation. De Villiers and Tlale (2012)

developed a control model for a four-wheel Mecanum omniwheel mobile robot which took mod-

elling uncertainties into account. Using this model, system performance was enhanced both for a

single Mecanum wheel and a four-wheel Mecanum platform.

Stonier et al. (2007) developed non-linear slip dynamics to describe a three-wheel Swedish

wheel mobile robot. A Proportional-Derivative (PD) controller and a direct torque controller were

developed, which in conjunction with the non-linear slip dynamics, allowed an increase in perfor-

mance on a variety of surfaces with different frictional coefficients.

1.1.3 Mobile Indoor Environmental Sensing

Measurement of the indoor environment has proven to be extremely important when creating

energy-efficient buildings and comfortable environments for the people within them. As noted

by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE),

5

temperature, humidity, air quality, light levels, and acoustics are all important conditions that must

be controlled indoors (Haberl et al., 2008). The environmental variables vary widely within a

building, both spatially and temporally, making it important to constantly monitor the environment

for accurate control (Zhang et al., 2013; Schiavon et al., 2017; Bulińska et al., 2014). Environ-

mental sensing is typically accomplished using a set of stationary sensors positioned strategically

within a building. A lack of accurate, easy to use, and inexpensive sensors reduces scalability

when using stationary sensors (Heinzerling et al., 2013). In addition, the use of stationary sensors

allows for high temporal resolution but low spatial resolution making it more difficult to predict the

environmental variables throughout a building without high monetary and energy costs (Jin et al.,

2018).

It is possible to alleviate the issue of low spatial resolution, at a relatively low cost, through

the use of mobile sensing (Heinzerling et al., 2013). Since the 1980s, sets of sensors have been

mounted on portable carts and moved about buildings to map the environment (Schiller et al.,

1988). These mobile sensor carts would be moved to set locations in the building where they

would take measurements of the environment (Nicole and McCartney, 2000; Benton et al., 1990).

While the sensor carts adequately accomplished reducing sensor costs, they are impractical for

continuous extended use as a human is needed to move them around. One solution is to install the

sensors on top of a mobile robot allowing for the removal of human interaction.

Several mobile sensing solutions have been proposed. For sensing of air contamination, Chen

et al. (2017) developed a method using multiple sensing robots to determine the location of a time-

varying contamination source. Fukazawa and Ishida (2009) outfitted an RC car with gas sensors in

order to locate a gas source. Widyantara et al. (2018) designed a differential drive robot featuring

an anemometer alongside gas sensors to determine the location of gas leaks quickly. An outdoor

pollution monitoring system developed by Reggente et al. (2010) was able to measure NO2, O3,

CO2, PM10, temperature, and humidity. More recently, a sensing robot created by Jin et al. (2018)

utilized a differential drive robot to monitor and create spatial maps of the indoor air quality.

6

1.1.4 Path Planning

It is imperative to take measurements of environmental variables within short periods of time (e.g.

half an hour) to ensure the environment does not change significantly during the measurement

period. Naturally, the more efficient the robot’s path planning, the larger the area that can be sensed

over a given period. In addition, efficient path planning can lower the robot’s power consumption,

resulting in longer battery life and a lower impact on the environment being measured.

Path planning methods are split into two major categories: offline, where the environment

is known, and path planning can occur prior to execution, and online, where the environment is

partially or completely unknown and path planning must happen in real-time using the information

gathered by the robot as it travels (Raja and Pugazhenthi, 2012).

Within the category of offline path planning, there are two main approaches: classic and evolu-

tionary. Many of the classic approaches are based on the configuration space (C-space) proposed

by Udupa and Murthy (1977) and developed by Lozano-Pérez and Wesley (1979). This method

treats the robot as a point and increases the size of all obstacles to compensate for the robot’s size,

reducing path planning to a 2-dimensional problem.

Lozano-Pérez and Wesley (1979) used the C-space in conjunction with a visibility graph (VGRAPH)

created by drawing lines between polygon objects within line of sight of each other and where the

drawn lines were between the start and end points of the robot. The graph was then used to de-

termine the shortest path between the start and end points. This method is effective in sparse

environments, but it begins to suffer from long computational time in dense environments as the

number of lines between objects increases (Siegwart et al., 2011). Other mapping methods have

been proposed; however, they generally do not provide shorter paths than the VGRAPH method

(Raja and Pugazhenthi, 2012).

The C-space has also been used by Lozano-Pérez (1983), Zhu and Latombe (1991), Likhachev

and Ferguson (2009), and many others by breaking the space down into a grid in which each cell

7

either contains an obstacle or does not. Using this grid, paths through free cells can be found in

order to determine the shortest path. While this method is fast for low resolutions, approaching the

optimal path requires a finer mesh, which exponentially increases the computational cost.

The classical methods for path planning, while effective, are slow at determining collision-

free paths and tend to only provide locally optimal solutions without finding the globally optimal

solution. In addition, Canny and Reif (1987) have shown that the problem is non-deterministic

polynomial-time hard. To handle the possibility of a more complex environment and even an

environment containing dynamic obstacles, a multitude of evolutionary algorithms have been de-

veloped.

Genetic Algorithm (GA), based on natural selection, selects a set of possible paths and then

evolves them by making minor changes and finding the new most efficient paths (Holland, 1992).

The GA method can be combined with other path planning techniques such as classical approaches

where near-optimal paths are found using a different approach and then improved using GA

(Dozier et al., 1997). AL-Taharwa (2008) used fixed-length paths to find a solution; however,

in complex environments, the method can take hours to find a solution.

Particle Swarm Optimization (PSO) is a widely-used method based on birds’ and fish’s social

behaviour. PSO is simpler in implementation due to fewer parameters (Kennedy and Eberhart,

1995). Similar to the GA, PSO has been combined with a graph-based approach in Qin et al.

(2004), first to find collision-free paths and then use the resulting paths as the starting path for the

PSO to optimize.

Evolutionary approaches suffer from non-smooth path planning, increasing the tracking error.

In this thesis, a classical approach will be used, specifically the D*-lite algorithm. D*-lite searches

for the optimal path in C-space and can handle both static and dynamic environments and can be

implemented in offline and online modes (Koenig and Likhachev, 2002). This flexibility makes it

ideal for the platform that will be developed, as it is simple to modify for use in highly populated

and dynamic indoor environments.

8

1.1.5 Environmental Mapping

There is a lack of research regarding the mapping of indoor wind speed and relative humidity,

which greatly affect thermal comfort (Liu et al., 2016).

Measurements of turbulent variances and fluxes are conducted using static sensors at strate-

gic positions, reducing systematic and random errors by measuring over a long period of time.

However, since this requires multiple sensors to measure a large space, a trade-off can be made

using a single mobile sensor that measures over a shorter period at each location. As discussed

by Lenschow et al. (1994) and Aliabadi et al. (2016) the systematic error and random error can be

described, respectively, as

SE = 2
τi
T

(1.1)

RE =

√
2
τi
T

(1.2)

where τi is the Eulerian integral time scale and T is the measurement period. Here it is assumed

that τi � T . It is clear from these equations that the errors are reduced as the measurement

period increases, and the measurement period must be significantly longer than τi in order to gain

meaningful measurements. As such, it is important to know the typical time scale for the indoor

environment.

Experiments conducted by Puits et al. (2013) show the time scale for temperatures are on the

order of a few minutes while the eddy turnover time is on the scale of tens of seconds in a small

room. Spilak et al. (2016) showed that the time scale for turbulence indoors could be on the

order of a few seconds. Takimoto et al. (2011) gave a more general eddy turnover time based on

environment size corresponding to a few seconds to tens of seconds. Since previous research uses

eddy turnover time and not integral time scale, a relationship between them must be determined.

9

1.1.6 Thermal Comfort

Thermal comfort is the measure of an individual’s perceived physical comfort based on the en-

vironment around them. Due to reliance on an individual’s thermal sensations, thermal comfort

is intrinsically subjective. The ASHRAE thermal sensation scale has been developed in order to

quantify thermal comfort. The scale ranges from −3 to 3, with 0 being a neutral sensation, nega-

tive values being cold, and positive values being hot (ASHRAE, 2017). Normally thermal comfort

would be quantified on the scale by surveying occupants of a building; however, it is useful to

determine an average thermal sensation rating for an environment based on quantitative measure-

ments of environmental physical variables.

Fanger (1972) developed the widely used Predicted Mean Vote (PMV) and the Predicted Per-

cent Dissatisfied (PPD) models. The PMV-PPD model uses four environmental variables (ambient

air temperature, relative humidity, wind speed, and mean radiant temperature) and two physiologi-

cal variables (metabolic rate and clothing insulation) to predict the average thermal comfort vote of

a large group of people in a given environment. While environmental variables can be measured or

estimated, physiological variables are determined using the ASHRAE thermal comfort standard,

which provides tables of metabolic rates and clothing levels during different activities and for dif-

ferent types of clothing. Mean Radiant Temperature (MRT) can be estimated based on the ambient

air temperature since the MRT and ambient temperature have a mean difference of 0.3 K and a

median absolute difference of 0.4 K. These differences are based on an analysis of the ASHRAE

Global Thermal Comfort Database, five field studies, and five laboratory test conditions (Dawe

et al., 2020; Földváry Ličina et al., 2018). Environmental variables can be numerically simulated

using Computational Fluid Dynamics (CFD) or other models or measured in the environment.

CFD simulations have been used extensively to predict thermal fields, airflow patterns, concen-

tration distributions of gasses and particulates, and prediction of thermal comfort (Nielsen, 2015;

Zhao et al., 2003). However, a major drawback of CFD is the reliance on initial and boundary con-

10

ditions, particularly wall surface temperatures, air inlet temperatures, and inlet and outlet airflow

rates. Small differences in these conditions can significantly change simulation results, with errors

upwards of 20% (Posner et al., 2003). In addition, CFD calculations are complex, require comput-

ing facilities, and are often beyond the skills of the most practical engineers (Aliabadi et al., 2011).

A combination of experimental data collection and numerical simulations can produce more ac-

curate results by using collected data as boundary conditions or for verification purposes of the

simulation (Shan and Lu, 2020). In an ideal world, a dense sensor network can be assembled, re-

sulting in highly-accurate spatial and temporal measurements of the environment; however, dense

sensor networks can interfere with occupants using the space, changing the environment. In addi-

tion, dense sensor networks are prohibitively expensive both in set-up and maintenance, depending

on sensor type (Williams, 2019). Therefore, it is desirable to collect environmental data using a

non-intrusive, low-cost method. One potential solution is the use of mobile robots to autonomously

transport sensor stations about the environment resulting in higher spatial resolution data sets at

the cost of lower temporal resolution (Jin et al., 2018).

1.2 Research Gaps

A review of the literature reveals a number of gaps. Most controllers developed for omniwheel

robots are either designed for four-wheels or are proposed but not implemented on physical sys-

tems. Of these controllers, only a few use dynamic models including wheel slip, and to the best of

the author’s knowledge, no known controllers have been developed using a kinematic model with

slip.

Most mobile environmental sensing platforms have been developed for gas source localization

purposes, while sensing of the environment for thermal comfort has been limited to sensor carts

or static sensor stations. Few mobile robots have been developed to measure wind velocity and

relative humidity, and to the best of the author’s knowledge, no platforms have been designed to

11

predict thermal comfort. In addition, omniwheel robots have not been used for environmental sens-

ing, despite the possible advantages provided by a holonomic platform, opening up the possibility

of developing an omniwheel based environmental sensing robot with a focus on measuring thermal

comfort in the indoor environment.

1.3 Objectives

This thesis aims to develop and prototype an omniwheel robot platform that will be able to carry

out environmental sensing experiments. In order to accomplish this task, the following objectives

must be met:

• Develop an omniwheel robot platform capable of transporting an array of environmental

sensors and supporting hardware.

• Develop a kinematic model of the robot platform, which includes wheel slip.

• Develop and test non-linear position controllers to determine the most effective controller

for the robot.

• Design and carry out an indoor environmental sensing experiment over a full diurnal cycle

in an office environment, focusing on the prediction of thermal comfort.

1.4 Structure of the Thesis

The thesis is structured as follows. Chapter 2 provides the necessary mathematical background for

this thesis. Chapter 3 discusses the electrical and mechanical development of the robot as well as

characterization of the robot’s intrinsic properties. Chapter 4 develops models for the robot and

its wheels, develops controllers for the robot, and includes experimental data, which is analyzed

to determine the most useful controller for environmental sensing. Chapter 5 discusses the path

12

planning and environmental experiments that were carried out and analyzes the environmental

data. Chapter 6 concludes the thesis and provides a path for future work on the platform.

13

Chapter 2

Background

Before developing the Autonomous Robotic Environmental Sensor (ARES) and deploying it for

experiments, background knowledge must be reviewed. This chapter will discuss the mathematics

behind useful linear and non-linear controllers before defining several environmental statistics. Fi-

nally, the Predicted Mean Vote and Predicted Percent Dissatisfied (PMV-PPD) models are defined.

2.1 Controllers

When developing controllers, it is important first to define the system using a state-space represen-

tation. The state-space equations contain the dynamics or kinematics of the system, including the

controller. For linear systems, the state-space equations are described generally as

ẋ(t) = Ax(t) + Bu(t) (2.1)

y(t) = Cx(t) + Du(t), (2.2)

14

where x(t) is the state vector, y(t) is the output vector, A is the system matrix, B is the input

matrix, C is the output matrix, D is the feed forward matrix, and u(t) is the input vector which

is set by the controller. The linear state-space equations are necessary for accurately controlling

a linear system, such as a DC motor. However, if the system is non-linear a more generalized

state-space representation is defined as

ẋ(t) = f (x(t),u(t)) (2.3)

y(t) = h (x(t),u(t)) , (2.4)

where f (x(t),u(t)) and h (x(t),u(t)) are nonlinear functions based on the kinematics or dynamics

of the system. If both functions can be described as linear combinations of state and input variables

the system can instead be described using (2.1) and (2.2).

2.1.1 PID Controller

A proportional-integral-derivative (PID) controller is an extremely popular method for controlling

linear systems. The controller uses a feedback scheme that subtracts the desired state of a system

from its measured state resulting in the system error, e(t). The error is then fed into the control

function defined as

u(t) = Kpe(t) + Ki

∫ t

0

e(t′)dt′ + Kd
d

dt
e(t) (2.5)

where e(t) = x(t) − xd(t) is the system error, xd(t) is the desired trajectory of the system, and

Kp, Ki, and Kd are the proportional, integral, and derivative design matrices, respectively. It is

often unnecessary to include all three terms to obtain desired system behaviour, resulting in PI,

PD, or P controllers depending on which terms are included.

15

When tuning a PID controller, it is important to understand how each gain affects the system re-

sponse. The proportional gain, Kp, multiplies the error, which in turn reduces error over time. The

larger the proportional gain, the quicker the system will reach its desired state. However, a large

proportional gain can cause the system to overshoot the desired state resulting in oscillations. If

the proportional gain is too large, the oscillations will destabilize the system causing unpredictable

behaviour.

The derivative gain, Kd, can help reduce oscillations about the desired state as it acts to slow

the rate of change of the system’s state. The derivative term effectively acts as a damping force

that can be tuned to cause the controller to be over-damped, critically-damped, or under-damped

as desired. Since the derivative term changes based on the error’s rate of change, it cannot be used

as a controller by itself and always requires either a P or I term to be included in the controller.

The integral gain, Ki, affects the steady-state error. If the system contains a small, constant

error, the integral of the error increases in magnitude, increasing the integral term and causing

the error to shift towards the desired state. A large integral term will cause oscillations about the

desired state since the integration causes the term to be time delayed. In most cases, it is not useful

to integrate over all time, so the error is normally integrated from the near past to the current time

(often on the scale of a few seconds).

2.1.2 Feedback Linearization

When handling non-linear systems, a PID controller no longer provides accurate and reliable con-

trol. One of the simplest methods for handling non-linear systems is feedback linearization. Feed-

back linearization uses a transformation to convert a non-linear system into a linear system, at

which point a PID controller can be applied. In order to apply feedback linearization, the system

16

must be representable in control-affine form, as

ẋ(t) = f (t,x(t)) + g (t,x(t))u(t), (2.6)

where f (t,x(t)) and g (t,x(t)) are linear or non-linear functions of the state vector. The controller

u is then defined as a function of the linear controller v(t) as

u(t) = a (t,x(t)) + b (t,x(t))v(t). (2.7)

where a (t,x(t)) and b (t,x(t)) are design functions.

The goal is for the controller u(t) to render a linear mapping between the new controller v(t)

and the state vector ẋ(t). This mapping can be obtained fairly easily by defining a (t,x(t)) =

−f (t,x(t)) and b (t,x(t)) = g−1 (t,x(t)) resulting in the transformed state-space equation

ẋ(t) = v(t). (2.8)

Any linear control method can be used to design v(t). It should be noted that while feedback

linearization is a useful tool when dealing with non-linear systems, it cannot handle non-linear

systems with uncertainty. As such, it is useful to have other methods for developing non-linear

controllers, such as sliding mode control.

2.1.3 Sliding Mode Control

Sliding mode control applies a discontinuous signal to a system causing the system trajectories to

“slide” along a “sliding surface”. The controller consists of two parts, a continuous control signal

to push the system towards the sliding surface and a discontinuous signal to keep the system on the

sliding surface. SMC can be applied to control-affine systems of the form (2.6) where f(t,x(t))

and g(t,x(t)) are continuous and smooth.

17

To create a sliding mode controller, a sliding surface (a manifold) is chosen such that the system

acts as desired when on the surface. Feedback gains must be chosen such that the system can reach

and stay on the sliding surface. The sliding surface is defined by a switching function σ(x(t))

which is analogous to the distance to the sliding surface from the position x(t). By definition

of the sliding surface, when x(t) is not on the sliding surface σ(x(t)) 6= 0 and when x(t) is on

the sliding surface σ(x(t)) = 0. The sliding surface is n dimensioned where n is the number of

controllable states and can be described as

{x(t) ∈ IRn : σ(x(t)) = 0} . (2.9)

For the system to reach the sliding surface, the system must reach σ(x(t)) = 0 from any initial

condition and once at σ(x(t)) = 0 the controller must be able to keep the system on the sliding

surface at all times.

To show the sliding mode exists, consider a simple Lyapunov function

V (σ(x(t))) =
1

2
σT (x(t))σ(x(t)), (2.10)

where σT (x(t))σ(x(t)) = ||σ(x(t))||22 is the distance to the sliding surface. Asymptotic stability of

the sliding surface exists and is stably reachable when the Lyapunov function is negative resulting

in

σT (x(t))σ(x(t)) < 0. (2.11)

Given the simple relationship in (2.11), stability can be guaranteed by constraining σ(x(t)) as

18


σ̇(x(t)) < 0 when σ(x(t)) > 0

σ̇(x(t)) > 0 when σ(x(t)) < 0.

(2.12)

Note that this condition only guarantees system stability when σ(x(t)) 6= 0 and σ̇(x(t)) 6= 0.

Around σ(x(t)) = 0, the controller is discontinuous allowing it to switch over the 0 condition

keeping the controller stable at all times.

2.2 Environmental Variables

Analysis of the environmental variables requires statistics to be executed. These statistics are aver-

ages, variances, and covariances (fluxes). Here we define the statistics and how they are calculated

for later use.

All environmental variables can be split into two parts, the average value over a measurement

period and the random fluctuation of the value, known as Reynolds decomposition. Mathemati-

cally, for a variable X , this is expressed as

X = X + x, (2.13)

where X is the average value of X and x is the random variation in X at the time of measurement.

For a set of N discreet measurements, the average of a variable is calculated as

X =
1

N

N∑
i=1

Xi. (2.14)

19

With the average defined, the variance of a variable, x2, can also be defined as

x2 =
1

N

N∑
i=1

(
Xi −X

)2
=

1

N

N∑
i=1

(xi)
2 . (2.15)

It can be seen from (2.15) that the variance of X is the squared average of its random fluctuations.

The covariance between two variables can be defined similarly. The covariance of X and Y is

defined as

xy =
1

N

N∑
i=1

(
Xi −X

) (
Yi − Y

)
=

1

N

N∑
i=1

xiyi (2.16)

where xy is the covariance between X and Y .

2.2.1 Environment Specific Variables

There are a few important variables to measure and calculate in the environment. Measurement of

U , V , andW correspond to the wind velocity in the x, y, and z directions, respectively. In addition,

the temperature T and relative humidity RH can be measured. The variances of U , V , W , and T

are useful; however, it is beneficial to normalize them. To do so, we define the total average wind

speed in the environment and the maximum difference in temperature, respectively, as

S =

√
U

2
+ V

2
+W

2
, (2.17)

∆T = Max (T1, · · · , TN)−Min (T1, · · · , TN) . (2.18)

The variances and covariances are normalized using (2.17) and (2.18) depending on which vari-

ables are being observed. Variances of U , V , W , S and covariances between them are normalized

with S
2
, variance in temperature is normalized with (∆T)2, and covariance between wind velocity

components and temperature are normalized with S∆T .

20

The last, and arguably most important, statistical term when evaluating the turbulence of an

environment is the turbulent kinetic energy (TKE), k. The TKE is calculated as half the sum of the

variances of the wind velocity components, defined as

k =
1

2

(
u2 + v2 + w2

)
. (2.19)

As with other variance-based statistics, the TKE is normalized using the squared average of total

wind speed S
2
.

2.2.2 Integral Time Scale

In Chapter 1 the eddy turnover time was introduced to determine the systematic and random errors;

however, these errors are defined using the integral time scale, so the relationship between the two

timescales must be shown. As discussed by Barrett and Hollingsworth (2001), several different

integral length scales can be used when characterizing turbulence and shear flow, each with its

own advantages and disadvantages. One of the most commonly used integral length scales is

derived from the Eulerian integral scale and given by

Λ = Uτi, (2.20)

where Λ is the integral length scale, U is the time-mean Eulerian velocity, and τi is the integral

time scale. From here, we can use the definition of the eddy turnover time to find that it is equal to

the integral time scale using (2.20), i.e.

tL =
Λ

U
= τi. (2.21)

This shows that the eddy turnover time and integral time scales are equivalent, and therefore,

can be used interchangeably when calculating the systematic and random errors.

21

A standard method for finding the integral time scale is by integrating from t = 0 to the

first zero-crossing of the auto-correlation or cross-auto-correlation function (Ahmadi-Baloutaki

and Aliabadi, 2021). The cross-auto-correlation is defined with the knowledge of the mean and

variance of variables X and Y as

R̂XY (k) =

∑N−k−1
t=0

[(
Xt −Xt

) (
Yt+k − Y t+k

)][∑N−k−1
t=0

[(
Xt −Xt

) (
Yt − Y t

)]]1/2 [∑N−k−1
t=0

[(
Xt+k −Xt+k

) (
Yt+k − Y t+k

)]]1/2

(2.22)

where R̂XY (k) is the cross-auto-correlation function dependent on the time lag between measure-

ments, k is the time step related to the lag time according to k = lag time
∆T

< N , N is the total number

of measurements made, ∆T is the period between time steps, and the averages at t and t+k are cal-

culated as X t = 1
N−k

∑N−k−1
t=0 Xt and X t+k = 1

N−k
∑N−k−1

t=0 Xt+k. The auto-correlation function

can be found simply by using the same variable for X and Y .

2.3 PMV-PPD Model

As discussed in Section 1.1.6, the ASHRAE thermal sensation scale can be used to quantify ther-

mal comfort in an environment. Fanger (1972) developed an equation that uses the metabolic rate

of a person, the mean skin temperature, and the sweat rate as the physiological parameters which

affect the subject’s heat balance to predict the mean vote for a large group of people in the environ-

ment. A combination of physiological and environmental variables are used to describe a neutral

thermal comfort as

22

M −W ←− 3.96× 10−8fcl

[
(tcl + 273)4 −

(
tr + 273

)4
]

+ fclhc (tcl − ta)

+ 3.05 [5.73− 0.007(M −W)− pa] + 0.42 [(M −W)− 58.15]

+ 0.0173M(5.87− pa) + 0.0014M(34− ta), (2.23)

where

tcl =35.7− 0.0275(M −W)−Rcl ((M −W)− 3.05 [5.73− 0.007(M −W)− pa]

− 0.42 [(M −W)− 58.15]− 0.0173M(5.87− pa)− 0.0014M(34− ta)) , (2.24)

is the temperature of the clothed surface, fcl is the clothing area factor defined as the ratio between

the surface area of a clothed body and the DuBois surface area of a nude body, tr is the mean

radiant temperature of the room, hc is the coefficient of convection on the body’s surface, ta is the

ambient air temperature, M is the metabolic rate of the person (units of met), W is the external

work on the person (i.e. external heating or cooling), and pa is the water vapour pressure in ambient

air.

The coefficient of convection, hc, and clothing area factor, fcl can be estimated using tables

provided in ASHRAE (2017) or found using the following relations:

hc =


2.38(tcl − ta)0.25 2.38(tcl − ta)0.25 > 12.1

√
S

12.1
√
S 2.38(tcl − ta)0.25 < 12.1

√
S,

(2.25)

fcl =


1.0 + 0.2Icl Icl < 0.5 clo

1.05 + 0.1Icl Icl > 0.5 clo.
(2.26)

23

where S is the total wind speed, and Icl is the level of clothing being worn as defined in the

ASHRAE fundamentals handbook using units of clo.

The predicted mean vote (PMV) estimates the average rating that a large group of people will

give to thermal comfort on the ASHRAE thermal sensation scale. The PMV index is defined by

the subject’s metabolic rate and the thermal load on the subject’s body. Fanger (1972) determined

an equation for the PMV defined as

PMV = [0.303 exp (−0.036M) + 0.028]L, (2.27)

where L is the thermal load on the subject’s body. The thermal load is calculated as the differ-

ence between the right and left sides of (2.23). In order to complete the calculation, tcl must be

calculated iteratively as

tcl =35.7− 0.028(M −W)−Rcl[39.6× 10−9fcl[(tcl + 273)4 − (tr + 273)4]

+ fclhc(tcl − ta)]. (2.28)

While the PMV is a useful index, it is often more useful to quantify the percentage of people

who will be dissatisfied with their thermal comfort. This is represented by the predicted percent

dissatisfied (PPD) index, which is a function of the PMV defined as

PPD = 100− 95 exp (−(0.03353PMV4 + 0.2179PMV2)). (2.29)

By definition, the lowest value of the PPD is 5%, and a PMV range of ±0.5 corresponds to a

PPD of 10%. The PMV-PPD model is used widely for quantifying thermal comfort and is defined

in the ISO standard 77301with a set of programs to help calculate the PMV and PPD.

1https://www.iso.org/obp/ui/#iso:std:iso:7730:ed-3:v1:en

24

https://www.iso.org/obp/ui/#iso:std:iso:7730:ed-3:v1:en

The platform being developed does not use a sensor for measuring the mean radiant temper-

ature, but it uses the ambient air temperature as a proxy. This introduces an average systematic

error of ±0.3 K in estimating the mean radiant temperature (Dawe et al., 2020). This assumption

introduces a small error which can be estimated by calculating the largest relative error in PMV

and PPD using error propagation. A large error of 0.6 K in mean radiant temperature results in a

relative PMV error of ±10% and a relative PPD error of ±13%.

25

Chapter 3

Platform Development

This chapter presents the development of the platform that will be used for control and environ-

mental experimentation.

3.1 System Components

The Autonomous Robotic Environmental Sensor (ARES), shown in Figure 3.1, can be divided into

three main subsystems: mechanical, electrical, and sensors. The mechanical subsystem consists

of the robot’s frame, the wheel drive, and the extra levels on which sensors can be mounted. The

electrical subsystem consists of power converters to provide regulated rails at 3.3V, 5V, and 12V

and a motor driver board connected to a Teensy 4.0 microcontroller. The sensor subsystem is com-

prised of a Young81000 ultrasonic anemometer and an HMP60 relative humidity and temperature

sensor connected to a Campbell Scientific CR6 data-logger. The rest of this chapter is devoted to

an in-depth overview of the platform.

26

Figure 3.1: ARES set up for thermal comfort measurements.

27

3.2 Mechanical Subsystem

Omniwheel design influences component selection for the robotic platform. Three of the more

prominent design schemes for omniwheels include four-wheel-drive Mecanum wheel robots, four-

wheel-drive Swedish wheel robots, and three-wheel-drive Swedish wheel robots.

The four-wheel-drive Mecanum wheel robots provide the smoothest rolling due to each roller

having a long contact time with the ground. The longer contact time comes at the cost of the

location of contact alternating between both sides of the wheel. Using four wheels results in

uneven pressure between the wheels and the ground unless a suspension system is implemented

to guarantee all wheels maintain the same contact force. Without all wheels maintaining the same

contact force, the robot is prone to slip on slightly uneven terrain, causing drift over time and less

accurate control. Since a suspension system would require re-calibration based on robot weight, it

is unsuitable for a modular and easily adaptable platform; therefore, a Mecanum wheel design is

not considered.

Swedish wheel designs also suffer from variable point of contact; however, the average point

of contact will always be at the wheel’s center, resulting in less modelling error than produced

by Mecanum wheels. The main design choice is between a four-wheel or three-wheel design

due to the lower modelling error. In both cases, the wheels are placed radially about the robot’s

center forming the most stable configuration. The four-wheel design would require a suspension

system to be implemented to maintain a reasonable level of controllability, adding complexity to

the design. However, the four-wheel design is capable of a higher top speed and is more energy-

efficient as moving in straight lines allows it to use only two wheels when properly oriented. The

three-wheel design suffers from lower speeds and higher power consumption due to each wheel

counteracting the other wheels’ force vectors. Depending on the three-wheel design’s geometry,

the robot’s orientation changes the maximum translational speed, which must be accounted for

when planning trajectories.

28

Given the four-wheel design’s added complexity, particularly the need for a suspension system,

a three-wheel design was chosen. While the three-wheel design is slightly less energy-efficient and

has a lower top speed, the extra stability and lower complexity from having only three points of

contact with the ground makes it optimal for a modular design. With this design type in mind, the

frame of the robot can be developed.

3.2.1 Robot Frame

The robot’s most stable configuration is achieved when the wheels are evenly spaced, radially about

the center of the robot, with each wheel having the same distance to the robot’s center of rotation,

as seen in Figure 3.2. This, in turn, means that each wheel is at a 120-degree angle from the other

two with respect to the robot’s center. The wheel drives are embedded in the robot, allowing the

robot to carry higher loads and reducing the risk of damage from the wheels hitting obstacles.

This has the added benefit of increasing ARES’ maximum load and creating more stable wheels

allowing for more accurate control.

The frame was designed around an equilateral triangle, with each side measuring 27.56 inches.

The corners of the triangle were cut off such that there would be a 4.33-inch-long segment resulting

in a hexagon with alternating 4.33-inch and 18.90-inch side lengths. Finally, three segments were

added to the inside of the hexagon such that they were parallel to and 3 inches away from the 4.33-

inch segments. The frame’s outer segments were built using 1×1-inch square iron tubing, and the

inner segments were built using 2×1-inch square iron tubing. All tubing was welded together in

order to ensure the frame was rigid and robust. Mounting holes were drilled in the frame as needed.

3.2.2 Wheel Drive

In the interest of allowing any number of sensors to be mounted onto the platform, the wheel

drive needed to handle a heavy load. The target load was set to a minimum of 50 kg. The frame

29

Figure 3.2: Top-down view of ARES’ frame with electronics and wheel drives attached.

was designed to support embedded wheels, allowing the axle to be supported on both sides of the

wheel. By supporting both sides of the axles, the wheel is guaranteed to always be aligned properly

with the ground. Slight misalignment in conventional wheel design poses no significant problem

because the wheel has a constant point of contact with the ground. However, misalignment in

Swedish wheel robots induces vibrations that affect the wheel drive because the point of contact

changes depending on which side of the wheel the roller is on. The vibration issue can be solved

by using suspensions; however, since this design does not use suspension, proper alignment is

essential.

The wheel drive consists of an axle slotted through two bushings with a wheel mounted between

the bushings using wheel hubs on both sides, seen in Figure 3.3. A motor is coupled to the axle

using a shaft adapter such that the motor and adapter can be switched, allowing for the motor to

be changed quickly, based on the application. The bushings are bolted to the robot frame, and the

motor is attached to the frame using an appropriate adapter.

30

Figure 3.3: View of the wheel drive from the bottom of ARES.

The axle is a 1/4-inch D-shaft allowing for all hardware to be attached to it using set screws.

All parts were chosen such that a 1/2-inch axle could be used instead by using alternate parts. Oil-

embedded bushings were used instead of ball bearings for ease of assembly and disassembly. Most

ball bearings require a push-fit to function properly, but bushings only require a slip fit allowing for

easy disassembly at the cost of slightly higher rotational friction. The bushings used are designed

to accept a 1/4-inch shaft and can handle shaft misalignment of 5 degrees. The bushings can

handle a radial load of 84 kg at 120 rpm, which, when combined with the six bushings, results

in a maximum platform weight of 504 kg. An equivalent bushing exists1 designed to mate with

a 1/2-inch axle while maintaining the same mounting hole positions, allowing for an easy swap

between 1/4 and 1/2-inch axles without modifying the robot frame.

The omniwheels and wheel hubs were purchased from Vex Robotics. The wheels are 4 inches

in diameter and 1.53 inches wide. Each wheel is mounted to the axle using aluminum wheel hubs

on each side of the wheel, also purchased from Vex Robotics. Wheel hubs are available to accept

either 1/4-inch or 1/2-inch axles. Each hub had a hole drilled and tapped through it so a set screw

1https://www.mcmaster.com/5912K4/

31

could be used to tighten the hub and wheel assembly to the axle.

For environmental sensing, the platform must have high positional accuracy while fast move-

ment is less important. The Pololu 37Dx73L DC motor was chosen for its slow rotational speed

of 67 rpm, its high maximum torque of 49 kg cm, and the included high-resolution encoder. Given

the 5.08-cm radius of the wheels, the maximum linear speed of a single wheel is 0.356 m s−1.

The encoder measures 64 counts per rotation of the motor shaft resulting in 9600 encoder readings

per revolution and a theoretical translational resolution of 33 µm. Since the robot will calculate

its position based solely on encoders, a high count encoder is extremely important in accurately

measuring the robot’s location. The motors were mounted to the frame using 1/8-inch angle iron

with the necessary mounting holes drilled into them.

3.2.3 Levels

ARES consists of two levels, the bottom level contains all hardware related to the control and

powering of the robot, and the upper level is reserved for all equipment related to environmental

sensing.

The bottom level was made by laser cutting a piece of 1/8-inch clear acrylic with all necessary

mounting holes for electronics. The acrylic was mounted to the frame using the same holes as were

used for mounting the motor. Since the motor mounting holes were drilled with loose tolerances,

the holes in the acrylic were cut out using a Dremel. This process was repeated for all other holes

that the acrylic sheet was covering.

The upper level was mounted 2 feet above the robot frame using three 1-inch diameter alu-

minum rods positioned radially about the center of the robot. The rods have a single 5/16-inch

hole drilled and tapped in the bottom to mount the rods to the robot frame. The tops of the rods

have four 11/64-inch holes drilled and tapped. A round piece of plywood was laser cut for the up-

per level, with appropriate mounting holes such that it could be screwed into the rods. At the center

32

of the upper level, another set of mounting holes were cut to screw into another rod on which the

ultrasonic anemometer, relative humidity, and temperature sensors could be mounted. The top rod

was made from a 1.25-inch diameter aluminum rod with four 11/64-inch holes drilled and tapped

radially about the rod’s face.

3.3 Electrical Subsystem

The electrical subsystem consists of two main components, the power delivery system and the con-

trol system. The power delivery system uses a pair of LiPo batteries, a 12V 10A buck converter

based on the Analog Devices LTC3807 synchronous step-down controller, and two linear regula-

tors for 3.3V and 5V based on the LM1085 voltage regulator. The control system consists of an

X-Bee wifi module, a Teensy 4.0 micro-controller, and a custom motor driver board with feedback

from the motor encoders.

3.3.1 Power Delivery

ARES requires 3.3V, 5V, and 12V rails in order to power both the control system and the sensors.

Since the motors and most environmental sensors run on 12V, the 12V converter needs to be

capable of handling a high power load. As will be discussed later, each motor is current limited to

2A combining to a total of 6A maximum. Most environmental sensors draw a maximum of a few

hundred milliamps, but for safety 2A at 12V is allocated to the sensors. Finally, 2A are allocated

to the linear regulators for converting to 5V and 3.3V which are used by the control system and

can be diverted to the sensors if necessary.

The 5V and 3.3V linear regulators are rated to provide 3A each. While the control system only

requires a few hundred milliamps per rail, the extra current source capabilities may be useful for

other sensor configurations. Since the 12V regulator cannot provide the necessary current for 3A

regulation on both voltage rails, a secondary battery source can be connected directly to the linear

33

Figure 3.4: 12V DC Buck Converter PCB layout.

regulators instead. For the current configuration of ARES, the full current source capabilities are

not required, and therefore the linear regulators are powered from the 12V rail in order to increase

efficiency.

3.3.1.1 12V DC Buck Converter

The 12V buck converter is based on the Analog Devices LTC3807, the schematic of which is

shown in Figure A.1. A 3D rendering of the board can be seen in Figure 3.4. The buck converter

can receive an input voltage from 14.4V to 38V and outputs 12V at up to 10A. At 24V input, the

buck converter reaches a maximum efficiency of 96% when outputting 3A and maintains 90%+

efficiency when outputting over 0.1A. The efficiency results in a maximum power loss of 5.5W

when at a full load of 120W. To combat overheating, the PCB has the ground pad of the LTC3807

connected directly to the bottom ground plane using vias. The solder mask on the bottom layer

beneath the LTC3807 has been removed so that an adhesive heat sink can be attached to provide

additional thermal management as necessary.

The board has three input and three output channels, each using an XT-60 connector. While

the 60A capability of the XT-60 connector is significantly higher than required, the connector

34

is standard for high capacity LiPo batteries and is used to conform to the standard. The use of

three inputs allows for multiple battery sets to be connected in parallel, increasing the total battery

capacity. For this configuration, two 3S 4000mA h LiPo batteries are connected in series resulting

in an average output of 22.2V and giving the robot an operational time of 8 hours. In the future,

multiple sets of batteries can be used to allow the platform to run for up to a day at a time without

recharging. All three 12V outputs are used, one feeds into the 3.3/5V linear regulator, one feeds

into the motor driver board, and the third feeds into the CR6 data-logger which in turn provides

power to the sensors.

PCB layout required several important design considerations. The signal and power grounds

must remain separate, which was accomplished using a modified star-grounding scheme with a

ground plane on the same layer as the decoupling capacitors. The sense resistor is measured using

Kelvin connections to eliminate unnecessary resistance from traces, and the sense traces are routed

side by side with the same path length. The decoupling capacitors are kept close to the LTC3807,

reducing path lengths and increasing stability. The switch, trigger, and boost pins are kept as far

away from small signals as possible to reduce cross-talk between them. All copper planes are cut

out from beneath the inductor to reduce eddy currents and increase efficiency.

3.3.1.2 3.3/5V Linear Regulators

The 3.3/5V power delivery board is designed around the LM108x series of low-dropout positive

linear regulators, the schematic of which is shown in Figure A.3. The LM108x series have ad-

justable regulators able to regulate up to a 29V differential between input and output voltages with

a maximum drop out of 1.5V and a current output of 1.5A, 3A, or 5A. For this board, the LM1085

was chosen since it can provide 3A, which is more than is needed but may be useful in the future.

When laying out the PCB, the 5V regulator was positioned, allowing it to be cut out and mounted

as a stand-alone unit if desired.

The adjustable version of the LM1085 was used, allowing the voltage to be set using a two

35

resistor voltage divider. The output voltage can be calculated as

Vout = 1.25V

(
1 +

R2

R1

)
, (3.1)

where Vout is the regulated output voltage,R1 is the top resistor of the voltage divider, andR2 is the

bottom resistor of the voltage divider. For voltage input, both an XT-60 connector and a standard

0.1-inch pitch 2-pin header are used. All outputs use the same 2-pin headers. In order to safely

conduct at 3A, two headers must be used since each header can only handle 2A maximum.

3.3.2 Control System

The control system’s goal is to drive the motors based on the desired position and the current po-

sition, calculated using encoder measurements. At the center of the control system is a Teensy

4.0, which can be programmed using the Arduino environment, a modified version of C++. The

Teensy 4.0 is, at the time of writing, the most powerful micro-controller compatible with the Ar-

duino environment, boasting an ARM Cortex-M7 with an NXP iMXRT1062 chip at a 600MHz

clock with a mean current draw of 100mA at 3.3V. The high clock speed allows for a faster control

loop resulting in more accurate tracking of the desired path. Important features of the Teensy 4.0

are 3 hardware I2C interfaces with a 4-bit FIFO buffer, 7 serial interfaces with a 4-bit FIFO buffer,

and 40 digital General-Purpose Input/Outputs (GPIO).

To receive data about the path the robot should follow, an XBee wifi module was connected to

the Teensy 4.0 via a serial connection at 9600 Bd. While a higher baud rate would have been useful,

any rate higher than 9600 Bd would exceed the available XBee module’s capabilities. In the future,

a higher bandwidth XBee wifi module should be used as this will allow two-way communication

and more data to be sent to and from the Teensy 4.0 allowing for easier diagnostics of the system

as it is running.

To drive the motors, receive feedback from the motors, and receive power, the Teensy 4.0 was

36

connected to the custom driver board. Motor speeds were sent to the board over an I2C interface

at 400 KiB s−1, and the feedback from the motors was connected through the board to the Teensy

4.0’s GPIO pins, which were later set as interrupts in order to count the encoder ticks.

3.3.2.1 Motor Driver Board

The motor driver board, shown in Figure 3.5, aims to take an I2C signal from any 3.3V logic micro-

controller, use the signal to control the motors, and return encoder tics to the micro-controller at

the required logic level. A schematic of the driver board can be found in Figure A.4. Driving the

motors is accomplished using a DRV8871 motor driver capable of driving a brushed DC-motor

with up to 2A at voltages from 6.5 to 45V. The DRV8871 is controlled using two PWM signals,

each driving an h-bridge. The motor current is limited to 2A using a current limiting resistor, the

value of which is calculated as

Ilim =
VI,lim
RI,lim

, (3.2)

where Ilim is the maximum current, VI,lim is the limit voltage, and RI,lim is the current limiting

resistor value. VI,lim is typically 64kV with a variance of 5kV based on temperature ranging from

-40 to 125°C, but for calculation purposes it is assumed that the value is always 64kV. With a

desired limit of 2A on the motor driver, the value of RI,lim is calculated to be 32 kΩ.

In order to reduce the effect from parasitic wire inductance, each motor driver has a 47 µF local

bulk capacitor allowing quick current variation and a 0.1 µF IC bypass capacitor, reducing noise

near the motor driver.

To save pins on the Teensy 4.0, a PCA9685 is used to generate the PWM signals. The PCA9685

provides 16 12-bit PWM generators allowing for fine control of the motors at a PWM frequency

of up to 1526Hz. As previously mentioned, the PCA9685 is driven using an I2C bus.

The motor encoders run on 5V logic, meaning the signals must be shifted down to 3.3V in

37

Figure 3.5: Motor driver PCB layout.

order to maintain an acceptable input voltage for the Teensy 4.0. The 5V logic is shifted down

to 3.3V logic using a MC14504, a bi-directional six-channel level shifter. Due to the COVID-19

pandemic, there was a shortage of MC14504s, so a CD4504 was used as a drop-in replacement

during a revision of the board. The CD4504b is a uni-directional level shifter; however, since the

encoders are a uni-directional signal, there are no problems with the replacement.

The board was designed to be placed at the center of the bottom level of the robot. Since all the

motors are positioned radially, the board was designed such that the motor headers are also placed

radially about the board 120 degrees from one another, providing neat wiring. The PCA9685 was

placed in the center of the board, and the level shifter was placed on the bottom of the board. An

XT-60 connector was used to provide the 12V rail, while the 5V and 3.3V rails were supplied

through 2-pin 0.1-inch pitch headers.

38

3.4 Sensory Subsystem

For the environmental sensing, a Young81000 ultrasonic anemometer and an HMP60 relative hu-

midity and temperature sensor were used, connected to a Campbell Scientific CR6 data-logger.

While the measurement parameters for both sensors and CR6 programming will be discussed in

Chapter 5, a brief overview of the sensors and data-logger is discussed here.

3.4.1 Ultra-Sonic Anemometer

The Young81000 anemometer is a three-dimensional ultrasonic anemometer. The ultrasonic anemome-

ter employs three sets of ultrasonic transducers operating at a nominal frequency of 40 kHz. Due

to the sensor’s geometry interfering with airflow, the anemometer has been calibrated, and look-

up tables were implemented to reduce the structure’s effect on measured wind velocity as much

as possible. Since the anemometer’s body partially blocks wind in the z-direction, the maximum

measurable wind elevation angle is 60 degrees. The Young81000 anemometer is capable of mea-

suring wind speed with a resolution of 0.01 m s−1 and an error of ±1%rms ± 0.05m s−1. Due to

the operating principle of ultrasonic anemometers, an ultrasonic temperature is also measured. In

the case of the Young81000 anemometer, the ultrasonic temperature measurement has a resolution

of 0.01 K and an accuracy of ±2 K.

The sensor is mounted on top of the upper rod using an adjustable metal ring clamp about the

bottom of the anemometer body. The anemometer is seated on the rod with a mounting depth of

11.5 cm creating a highly stable mount. The sensor was oriented such that it lined up with the

robot frame of reference, which will allow for each wind velocity vector to be aligned with the

room.

39

3.4.2 Relative Humidity and Temperature Sensor

The HMP60 relative humidity and temperature sensor uses an INTERCAP® sensor and a 1000 Ω

platinum resistance thermometer (PRT) to measure non-condensing relative humidity and tempera-

ture, respectively. The sensor measures relative humidity from 0 to 100% with a resolution of±3%

at normal room temperatures with a relative humidity less than 90%. The accuracy decreases to

±5% for relative humidities above 90%. The HMP60 temperature sensor is capable of measuring

between -40 and 60◦C with an accuracy of ±0.6 °C, much better than the ultrasonic temperature

measurement.

The sensor was mounted in a 41303-5A 6-plate shield, used to protect the sensor from radiation

and harsh environments and provide mounting hardware. After securing the HMP60 in the 6-plate

shield, the shield was mounted to the top rod far enough below the Young81000 anemometer such

that it is unable to interfere with the measured wind velocity.

3.4.3 CR6 Data-logger

A Campbell Scientific CR6 data-logger is used for environmental data collection. The CR6 data-

logger is an industry-standard data-logger capable of high-frequency measurements and measure-

ments of sub microvolt analog signals. While the robustness of the data-logger is not necessary

for this application, using a CR6 makes adapting the platform to other sensors a simpler task. The

data-logger was placed on the second level of the robot. Since the robot undergoes low accelera-

tion, the CR6 data-logger does not need to be secured to the robot and can instead be set on the

platform. The CR6 data-logger has little on-board memory, so a 16GB microSD card was used for

saving collected data.

40

Chapter 4

Control Design

In this chapter, non-linear controllers are designed and applied to the platform using kinematic and

dynamic models. The controllers’ positional accuracy is determined using a visual tracking system

to determine which controller is best suited for environmental sensing.

4.1 Kinematic and Dynamic Models

The development of a controller using only the robot’s kinematic model may provide acceptable

movement accuracy; however, the system performance can be improved by controlling each motor

independently. To this end, both the kinematic robot model and the dynamic DC-motor model are

developed.

4.1.1 Kinematic Model

The geometry of an omniwheel can be defined using three angles, α, β, and γ, shown in Figure

4.1. Here α is the angle of the wheel’s center with respect to the positive x axis in the robot’s

frame of reference, β is the mounting angle of the wheel with respect to α, and γ is the angle of the

rollers with respect to the wheel’s axis. Using this geometry, the kinematic model of a three-wheel

41

Figure 4.1: Diagram of a Swedish wheel and its corresponding coordinates in the robot’s frame of
reference (Siegwart et al., 2011).

drive Swedish wheel robot can be derived using the rolling constraint on omniwheels defined by

Siegwart et al. (2011) as


sin (α + β + γ)

− cos (α + β + γ)

−l cos (β + γ)


T

R (θ) ξ̇I − rφ̇ cos γ = 0, (4.1)

where l is the distance from the robot’s Center of Rotation (CoR) to the center of the wheel, r is

the radius of the wheel, φ̇ is the angular velocity of the wheel, ξ̇I is the state velocity vector in the

global frame defined as ξ̇I =

[
ẋ ẏ θ̇

]T
, and R (θ) is a rotation matrix described by

R (θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (4.2)

The rolling constraint for the omniwheel only applies when the wheel is not slipping, but slip

42

can be included by modifying (4.1) as


sin (α + β + γ)

− cos (α + β + γ)

−l cos (β + γ)


T

R (θ) ξ̇I − rφ̇ cos γ = vs, (4.3)

where vs = rφ̇− vwheel is the slip velocity of the wheel defined as a function of the wheel velocity

vwheel.

With the rolling constraint of a single omniwheel, the robot’s geometry can be used to derive

ARES’ kinematic model. The wheels being used are standard 90-degree Swedish wheels mounted

radially about the robot resulting in γ = β = 0. For each wheel i, the rolling constraint simplifies

to: 
sinαi

− cosαi

−l


T

R (θ) ξ̇I − rφ̇i = vsi , (4.4)

where αi = 2π(i−1)
3

for i = 1, 2, 3. Substituting each αi into (4.4) results in three equations to

describe the robot’s kinematics. These equations can be written in matrix form as

u =


φ̇1

φ̇2

φ̇3

 =
1

r

(
B (θ) ξ̇I − vs

)
, (4.5)

where u is the controllable wheel’s angular velocity vector, vs =

[
vs1 vs2 vs3

]T
, and

B (θ) =


sin θ − cos θ −l

√
3

2
cos θ − 1

2
sin θ

√
3

2
sin θ + 1

2
cos θ −l

−
√

3
2

cos θ − 1
2

sin θ −
√

3
2

sin θ + 1
2

cos θ −l

 (4.6)

43

is a non-linear transformation matrix dependant on the global angular position of the robot.

In order to develop a controller, it is useful to use the inverse kinematic model described by

ξ̇I = B−1 (θ) (ru + vs) (4.7)

4.1.2 Motor Dynamics

The kinematic model is capable of describing the motion of the robot using the angular velocity of

each wheel. However, motor controllers are necessary to reach the desired angular velocities for

each wheel accurately. To do so, the dynamics of a DC-motor are first derived based on Newton’s

second law and Kirchhoff’s voltage law, respectively, as

Jθ̈ + bθ̇ = Ki, (4.8)

L
di

dt
+Ri = V −Kθ̇, (4.9)

where J is the moment of inertia of the motor and all attached hardware, θ is the angular position of

the motor shaft, b is the motor’s viscous friction, K is the motor constant, i is the current provided

to the motor, L is the inductance of the motor, R is the resistance of the motor, and V is the voltage

provided to the motor. Writing (4.8) and (4.9) in vector forms results in the motor dynamics and

output, respectively, as

d

dt

θ̇
i

 =


− b
J

K
J

−K
L
−R
L


θ̇
i

+

0

1
L

V (4.10)

44

zmotor =

[
1 0

]θ̇
i

 . (4.11)

A linear controller can be designed using the state-space model defined by (4.10) and (4.11).

4.2 Controllers

Due to the non-linear nature of the robot’s kinematics, non-linear controllers should be designed.

In this thesis, a feedback linearization controller and a sliding mode controller were developed.

The output from both controllers is the u vector seen in (4.5); however, the DC-motors are con-

trolled using a PWM signal. Since the PWM signal does not linearly affect the motor’s angular

velocity, a PID controller is designed for each wheel individually. The control schemes using the

feedback linearization controller and the sliding mode controller are shown in Figures 4.2 and 4.3,

respectively.

Figure 4.2: Block diagram of feedback linearization controller with a PID controller on each wheel.

Figure 4.3: Block diagram of sliding mode controller with a PID controller on each wheel.

45

4.2.1 Feedback linearization

Using the kinematic model of the robot, a feedback linearization controller can be designed. In

formulating the feedback linearization in this work a no-slip condition is assumed since ARES

does not have the necessary sensors to detect slip in its current configuration. This assumption also

simplifies (4.7), which, after converting to error dynamics, is expressed as

ėr = rB−1 (θ)uFL, (4.12)

where er = ξd − ξI and ξd is the desired global state of the robot. Linearization is accomplished

by defining uFL using a controller as

uFL =
1

r
B (θ)vFL, (4.13)

where vFL = ė. The use of 1
r
B linearizes the robot kinematics allowing vFL to be any linear

controller.

It is convenient to define vFL as a Proportional-Integral-Derivative (PID) controller, defined as

vFL = Kper + Kdėr + Ki

∫ t

0

er(t)dt (4.14)

where Kp, Kd, and Ki are the proportional, derivative, and integral 3× 3 design matrices, respec-

tively.

Instead of integrating from 0 to t in (4.14), the previous 2 seconds of errors were integrated

over reducing excessive overshoot in the error. Through trial and error, the design matrices were

46

found to be

Kp =


20 0 0

0 20 0

0 0 6

 (4.15)

Ki =


50 0 0

0 50 0

0 0 30

 . (4.16)

It was found that the controller performed best when the derivative term was dropped, causing

v to be a PI controller.

4.2.2 Sliding Mode Control

The Sliding Mode Controller (SMC) uses (4.5) and does not exclude the slip term like the feedback

linearization controller. The sliding surface is defined as

σ = er + λ

∫
erdt, (4.17)

where σ is the sliding surface, λ ∈ IR3x3 is a positive design matrix, and er = ξd − ξI . The

equivalent control portion of the input is defined by setting the derivative of the sliding surface to

zero and solving for the control vector ûSMC as

σ̇ = ėr + λer = B (θ)−1 (rûSMC + v̂s)− ξ̇d + λer = 0 (4.18)

ûSMC =
1

r

(
B (θ)

(
−λer + ξ̇d

)
− v̂s

)
(4.19)

where v̂s is a vector containing the estimated slip of each wheel. Since ARES does not have any

sensors for determining slip, it is assumed that v̂s = 0 and the error created by this is handled by

47

the SMC.

In order to maintain the system on the sliding surface, the discontinuous portion of the con-

troller is defined as

uc,SMC = −B (θ)ksign(σ) = −B (θ)ksign
(
er + λ

∫
erdt

)
, (4.20)

where k ∈ IR3x3 is a positive definite design matrix. Combining (4.19) and (4.20), the complete

controller is defined as

uSMC = ûSMC + uc,SMC

=
1

r

(
B (θ)

(
−λer + ξ̇d

)
− v̂s

)
−B (θ)ksign

(
er + λ

∫
erdt

)
. (4.21)

Considering the Lyapunov function V = 1
2
σ2, the constraints on k can be derived to guarantee

stability as

dV

dt
≤ η |σ|

σT σ̇ ≤ η |σ|

σT
[
B (θ)−1 (vs − v̂s)− ksign (σ)

]
≤ η |σ|

η + B (θ)−1 (vs − v̂s) ≤ k (4.22)

where η is a small positive constant. From this derivation it can be seen that σTk = kσT which is

achieved by making k a symmetric matrix.

The λ and k design matrices were roughly tuned in simulation and more finely turned during

48

testing. The design matrices are

λ =


7 0 0

0 7 0

0 0 6

 (4.23)

k =


0.01 0 0

0 0.01 0

0 0 0.01

 . (4.24)

4.2.3 PID Controller for Motors

The kinematic model of the robot uses the velocity of each wheel as the system input. As such, all

the controllers developed for the robot output a control signal corresponding to the desired angular

velocity of the wheels. To achieve accurate angular velocity in a reasonable time frame, a PI

controller was implemented on each motor. The derivative term was omitted since testing showed

the controller performed best without it. Since the control input to the motors is voltage, the design

matrices in (2.5) are reduced to scalar gains. Through modelling and testing, the appropriate gains

were found to be Kpw = 10 and Kiw = 30. Similar to the feedback linearization controller, the

integral of error was calculated over the previous 2 seconds in order to reduce oscillations caused

by the integral term.

4.3 Physical Parameters

A number of physical parameters are required in order to control the robot accurately. It is impor-

tant to obtain accurate values to ensure good performance. All necessary parameters are listed in

Table 4.1.

49

Parameter Symbol Value

Motor Viscous Friction b 2.6 N m s
Axle Moment of Inertia J 2.13× 10−5 kg m2

Motor Constant K 105.21 N m A−1

Armature Resistance R 10.4 Ω
Motor Inductance L 517 µH
Wheel Radius r 5.08 cm
Wheel to CoR Distance l 26.32 cm

Table 4.1: Parameters required for the motor dynamic and omniwheel kinematic models.

The wheel radius and distance between each wheel and the robot’s center of rotation were

determined using CAD models. The axle’s moment of inertia was calculated using the mass and

radius of the axle, wheel, and wheel hubs. The motor torque constant and motor viscous friction

are listed in the motor’s datasheet. The armature resistance and motor inductance were found

experimentally using a Maxwell-Wien bridge and an arbitrary signal generator.

4.4 Controller Verification

Having developed the feedback linearization and sliding mode controllers, experiments were con-

ducted to determine which controller provided the most reliable and accurate performance. An

accurate tracking system was required to quantify the controller performances without reliance on

positional data collected by the robot. This tracking is accomplished through the use of a VICON

system. The VICON system consists of a set of infra-red cameras that can track Infra-Red (IR) re-

flectors. By knowing each camera’s location and combining the video feeds from the cameras, the

locations of each marker can be calculated with a resolution of 0.1mm and an error of ±0.2mm.

The VICON system data can be streamed in real-time to a MATLAB environment, where data

about each reflector position was collected and analyzed.

The robot frame had eight reflectors attached to it. Six of the reflectors were positioned at each

outer corner of the frame. The last two reflectors were placed near the first wheel of the robot,

50

breaking the reflectors’ symmetry and allowing for the robot’s angular position to be calculated.

Using the robot’s radius and three reflectors, the center of the robot was calculated, allowing for the

x and y positions of the robot to be obtained. By averaging the position of the two points closest

to the first wheel and subtracting the x and y position of the robot, the robot’s angular position was

calculated. Code used during data collection is presented in Appendix B.

The desired robot trajectory was sent over WiFi using the xBee module. The script that col-

lected positional data from the VICON system also contains the robot’s desired path such that the

path could be sent at 50Hz, the same frequency as the controller. The path was calculated such

that it would not exceed the maximum speed of the robot. Originally, the system was set to run

at its maximum of 100Hz; however, the xBee module is only capable of 9600 Bd, limiting the

data throughput to the robot, so the VICON frequency was reduced to 50Hz. The low baud rate

also means the robot cannot send its calculated position back to the user at 50Hz; therefore, only

the desired and real robot positions are tracked. While these parameters are all that are needed

for verifying the controllers, the robot’s calculated position would have aided in the tuning of the

controllers and troubleshooting.

Fine-tuning of the controllers was accomplished through trial and error over multiple test paths.

Once the controllers had been tuned to produce acceptable margins of error, the robot was sent on

two zig-zag pattern paths in order to calculate and compensate for drift. Once drift compensation

had been accomplished, other paths were executed to quantify each controller’s performance.

4.4.1 Drift Compensation

The robot was set on a path that had it sweep the room by travelling to a set of equally spaced

positions, shown in Figure 4.4. The robot was given 8 seconds to reach each position. Bias was

calculated for each test in order to determine drift per meter. The side-to-side motion of the path

allows for bias to cancel itself; therefore, the robot was rotated 90 degrees, and the tests were run

51

a second time to determine drift for both the x and y directions. Each test was repeated 10 times

in order to reduce random error.

Once testing had been completed and bias calculated, the drift was used to adjust the robot’s

position calculation, and the tests were re-run to determine if the drift was sufficiently reduced.

Since the drift is caused by small errors in physical parameters and encoder measurements, either

controller could be used for the tests. The SMC was chosen due to preliminary tests indicating that

it had lower random error than the feedback linearization controller.

As shown in Figure 4.4, the robot tended to overshoot when travelling in the positive x direc-

tion. Figure 4.5 plots the error between the robot’s real and desired positions as a function of time.

Using a least-squares method, the line of best fit is plotted, providing drift as a function of time. A

simple conversion can be performed to show that drift in the x direction is 0.0199 m m−1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

y
[m

]

Start

Finish desired path
trial 0
trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

Figure 4.4: Position of the robot at each test point over the path moving in the positive x direction.

52

0 20 40 60 80 100
time [s]

0.00

0.02

0.04

0.06

0.08

x
er

ro
r [

m
]

0.000524 t
trial 0
trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

Figure 4.5: Error as a function of time, linear fit shows positional error as a function time corre-

sponding to a drift of 0.0199 m m−1.

Running the same tests for the y direction provides similar results, as seen in Figure 4.6. The

robot tends to overshoot the y position, which is quantified in Figure 4.6 using a line of best

fit. Converting to drift, the robot exhibits a drift of 0.0259 m m−1 in the y direction, which is

comparable to the drift in the x direction. The drifts’ similarity confirms that modelling error is

responsible for drift and can be remedied by scaling the calculated position.

53

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
y

[m
]

Start

Finish
desired path
trial 0
trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

Figure 4.6: Position of the robot at each test point over the path moving in the positive y direction.

0 20 40 60 80 100
time [s]

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

y
er

ro
r [

m
]

0.000684 t
trial 0
trial 1
trial 2
trial 3
trial 4
trial 5
trial 6
trial 7
trial 8
trial 9

Figure 4.7: Error as a function of time, linear fit shows positional error as a function time corre-

sponding to a drift of 0.0259 m m−1.

54

Using this data, the position calculation was scaled in order to reduce the bias. Both tests were

re-run 5 additional times with drift compensation and plotted in Figures 4.8 and 4.9. Drift was

calculated using the same method as before and showed a marked improvement with drifts of 2.9

mm m−1 and 2.0 mm m−1 in the x and y directions, respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

y
[m

]

Start

Finish desired path
trial 0
trial 1
trial 2
trial 3
trial 4

Figure 4.8: Position of the robot at each test point over the path moving in the positive x direction

after drift compensation.

55

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
y

[m
]

Start

Finish desired path
trial 0
trial 1
trial 2
trial 3
trial 4

Figure 4.9: Position of the robot at each test point over the path moving in the positive y direction

after drift compensation.

One of the major issues with accurately controlling the robot is its inaccurate prediction of an-

gular position. The robot’s motors and wheels have small tolerances, allowing the wheels to rotate

slightly without rotating the primary motor shaft, from which the encoders take their measurements

from. This allows for the robot’s real angular position to be up to a degree off from the calculated

angular position. While this is a fairly small error when applied to environmental sensing, over the

course of 1.5 m an angular error of 1 degree corresponds to a drift of 2.6 cm. In addition, each time

the robot stops, the angular error has a chance to increase as the wheels have reset their position.

While this compounding over a large set of starts and stops should result in a net 0-degree error,

it is possible to locally have it compound to a few degrees resulting in the larger random error. In

the future, encoder data should be fused with data from a gyroscope to determine angular position

more accurately.

With the drift compensated for, both controllers’ performance can be quantified using different

56

paths, starting with a parametric rose trajectory.

4.4.2 Rose Trajectory

Both controllers were tested on a 4-petal rose trajectory, shown in Figure 4.10, over the course of

120 seconds, covering a total distance of 19.37 meters. The rose plot’s symmetry reduces error

due to bias and results in random error dominating the total measured error. The rose trajectory is

described as


x

y

θ

 =


cos
(
πt
15

)
cos
(
πt
30

)
cos
(
πt
15

)
sin
(
πt
30

)
0

 . (4.25)

Each test was run 5 times, and the results were averaged to reduce bias from a single run.

The time-independent Root Mean Squared Error (RMSE) of each controller is shown in Table 4.2.

Graphs of the robot position when using the feedback linearization controller and the SMC can be

seen in Figures 4.10 and 4.11, respectively. As can be seen, the SMC outperforms the feedback

linearization controller by a factor of four, having an average translational RMSE of 4.2 mm and a

rotational RMSE of 0.0058 rads.

Table 4.2: Time independent RMSE for each dimension during parametric rose trajectory.

Controller x RMSE (mm) y RMSE (mm) θ RMSE (rad)

Feedback Linearization 18.4 20.3 0.016

Sliding Mode Control 4.1 4.3 0.0058

57

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y

[m
]

Real path
Desired path

Figure 4.10: Omniwheel robot path compared to desired path using Feedback Linearization.

58

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y

[m
]

Real path
Desired path

Figure 4.11: Omniwheel robot path compared to desired path using SMC.

4.4.3 Random points

While the robot will never rotate during the environmental experiments, it is useful to quantify

how well the controllers perform when the robot is rotating and translating simultaneously. There-

fore, the controllers are tested by moving the robot to random positions in the room, testing the

controllers’ ability to stabilize from any initial state. For each test, 11 positions were randomly

generated, and the robot was given 20 seconds to reach each position before being sent the next

one.

Position error for the feedback linearization controller is shown in Figure 4.12. The feedback

linearization controller performs reasonably when reducing error in the x and y directions; how-

ever, it has difficulties reducing error in angular position. Additionally, the use of a PID controller

59

results in a long settling time.

0 50 100 150 200
Time [s]

3

2

1

0

1

2

x
[m

],
y

[m
],

 [r
ad

]

x error
y error
 error

Figure 4.12: Feedback linearization controller error in translational and rotational positions as a

function of time when stabilizing to random positions.

The SMC significantly outperforms the feedback linearization controller both in convergence

time and error reduction, as seen in Figure 4.13. Other than small deviations, the SMC converges to

zero error in a linear fashion and exhibits no overshoot, making it ideal for environmental sensing,

where time spent travelling from one position to another is time lost for taking environmental

measurements. The sliding mode controller also has no issues with achieving the desired angular

position thanks to the discontinuous control signal forcing the robot onto the sliding surface.

60

0 50 100 150 200
Time [s]

3

2

1

0

1

2

3
x

[m
],

y
[m

],
 [r

ad
]

x error
y error
 error

Figure 4.13: Sliding mode controller error in position as a function of time when stabilizing to

random positions.

These results show that the sliding mode controller performs significantly better than the feed-

back linearization controller. Therefore the sliding mode controller will be used for all environ-

mental sensing experiments.

61

Chapter 5

Environmental Analysis

To verify ARES as a viable platform for indoor environmental sensing, the robot was tested in

a lab environment. In this chapter, the specifics of the room in which ARES was tested are dis-

cussed, the platform’s operation is explained, and a D* Lite path planning algorithm is used to

generate collision-free paths for ARES to follow. After processing the collected environmental

data, environmental statistics in the room are discussed, and thermal comfort predictions are made.

5.1 Experimental Set-up

The environmental testing needed to be executed in an indoor office environment. Two options

were readily available, the VICON lab and the Mechatronics lab. The VICON lab would allow for

easy tracking of the robot position; however, the floor space is extremely small with few obstacles,

which would likely lead to fairly un-interesting data to be collected. Additionally, the VICON lab

is used to teach undergraduate courses and is not available for full 24 hour periods at a time. The

Mechatronics lab is a well-used workspace with multiple large workstations. Figure 5.1 shows a

simplified CAD model of the room, with all important features. The size of the Mechatronics lab

allows for the robot to take measurements spatially far apart, both near work stations and along

62

common walking spaces. Without the VICON system for positional tracking, the robot must rely

on encoder measurements to determine its position. As shown in Chapter 4, the encoders provide

sufficient positional accuracy when using the sliding mode controller. Since the robot does not

always start in the exact same spot, and more importantly, with a slight rotation, drift can easily

accumulate. Therefore, when running experiments, the experimenter needed to be in the room to

make sure it reached the first set point accurately. When the robot did not accurately reach the set

point, it was manually adjusted slightly to make sure it is lined up properly for the rest of the run.

In the future, implementation of a Simultaneous Localization and Mapping (SLAM) system would

allow the robot to take measurements fully autonomously.

0 200 400 600 800 1000 1200 1400
x (cm), U

0

200

400

600

800

y
(c

m
),

V

p1
(70,744)

p2
(70,424)

p3
(440,424)

p4
(440,744)

p5
(760,424)

p6
(760,744)

p7
(1060,424)

p8
(1180,534)

Ceiling Exhaust
Computer
Window
Heater/Air Conditioner
Diffuser

Window Fan

 z,WStart

Figure 5.1: Map of the Mechatronics lab with robot start location, positions to measure the envi-

ronment, and the position of the window fan.

63

At the time of the experiments, the HVAC system was set to cool the room down. This was

accomplished using an air conditioner below each window on the outer wall of the room, which

pushed cooled air up towards the ceiling. There is a bulkhead with two vents acting as diffusers on

the opposite side of the room. Since the room is used as an office space, many powerful computers

are often running all day. Each computer is positioned under the desk on a small elevated platform,

allowing the computer’s cooling system to more easily eject hot air out the bottom of the computer

case. The number of computers in the room causes the room to be uncomfortably warm, as such a

fan is placed in front of a slightly open window. The fan is run continuously, allowing the room to

cool down overnight, so the room is at a comfortable temperature in the morning.

Measurement points in the room were chosen based both on spacing and frequency of use.

Positions 1, 4, 6, and 7 were chosen due to their proximity to workstations. These points are

positioned between workstations to obtain a reasonable measurement of the environment where

people would normally be sitting. It should be noted that position 1 is within one meter of the

workstation that the experimenter sat at, as such data at this point will be influenced based on

what the experimenter was doing at the time. Due to the COVID-19 pandemic, nobody else was

in the lab, but the lab computers were still being used remotely since all tests were conducted on

weekdays. When evaluating thermal comfort, these positions will be considered as places that

people normally work while sitting.

Positions 3 and 5 are located near the whiteboard, where people tend to stand writing on the

board or walk along to reach their workstations. Position 2 is located at the entrance to the room

where there is high traffic, especially when the room is used for undergraduate labs. Position 8 is

positioned near a 3-D printer, laser cutter, and the area where undergraduate labs are conducted.

Position 8 is also in the airflow path from the fan sitting in the window, causing more draftiness

than other areas of the lab. These areas are most commonly used while standing or walking; thus,

these working conditions will be considered when evaluating thermal comfort.

64

5.1.1 Datalogger and Instrument Set-up

In order to collect data from the Young 81000 ultrasonic anemometer and the HMP60 tempera-

ture and relative humidity sensor, the CR6 data-logger had to be correctly programmed. The CR6

data-logger was set up with differential voltage inputs for each data point collected (e.g. U com-

ponent of wind velocity, relative humidity, etc.). Both the ultrasonic anemometer and temperature

and relative humidity sensors use an output voltage of 5V to encode their data. By dividing each

measurement range by its output voltage range, conversion equations for voltage to wind velocity

components, relative humidity, or temperature were found. These conversions were implemented

in code, allowing the CR6 data-logger to save data using units of meters per second for wind veloc-

ity components, percentages for relative humidity, and Kelvin for temperature. Wiring diagrams

for the sensors and CR6 data-logger can be found in Appendix C.2.

The data was collected at 10Hz and saved to a microSD card every fifteen minutes. While

the CR6 data-logger stores a long-term file with all data collected since the last reset, this file

overwrites itself as more data is collected and sometimes acts spuriously. To avoid data loss, a sub-

function was called to save each minute of data as its own file. The data was written to the microSD

card every 15 minutes in one-minute increments but could be forced to save using the eject button.

When the eject button is pressed, the CR6 data-logger enters a saving period during which the

“act” LED turns red. One must wait until the “act” LED switches to green before removing the

microSD card. Removing the SD card before it has been properly ejected may lead to loss of data,

so the card was always removed over one minute after data had been collected, and special care

was taken not to power off the robot while files were being saved.

The code was uploaded to the CR6 data-logger using the logger-net application provided by

Campbell Scientific. If the logger-net application is not available due to the software trial period

expiring, the PC200 software can be used to upload code and download data instead. However,

the software does not provide documentation for the proprietary language Campbell Scientific

65

dataloggers use. When programming the CR6 data-logger, the PC200 application was often used

to pull data from the CR6 data-logger without saving it to the SD card to confirm that data was

being properly collected. The code used during experiments is included in Appendix C.3.3.

5.1.2 Path Planning

The robot’s path was generated using a D* Lite algorithm modified from a python version written

by user zhm-real on GitHub1. The room was defined using the simplified CAD drawing of the room

and a pixel resolution of 1 cm. To ensure the robot would not run into any obstacles, the radius

of each obstacle was increased by 0.4 meters, slightly larger than the robot’s radius. Paths were

generated between positions by feeding the positions into the D* Lite algorithm as start and end

points sequentially (i.e. start = position 1, end = position 2). These paths were stitched together,

resulting in a full half-hour path. It should be noted that the robot pushes lightly against the door

at the start of each run before continuing to position 1. Doing so helps align the robot with the

room by causing it to rotate slightly in order to be parallel to the door, helping alleviate some of

the previously mentioned alignment issues.

The D* Lite algorithm was chosen in part due to its ability to adapt to different environments.

In this case, the environment is not changing; however, using the D* Lite algorithm allows for

imaginary obstacles to be placed to make small manual adjustments to the path easily. This was

particularly useful on the path between positions 6 and 7, where the robot originally passed ex-

tremely close to a desk when taking the shortest path. To prevent this, the desk polygon was

expanded slightly using imaginary obstacles to keep the robot at least 7 cm from any obstacles.

The imaginary obstacles were also used to smooth out the paths such that there were fewer sudden

changes in momentum, reducing slip and increasing the robot’s positional accuracy.

A script was written to take the D* Lite algorithm paths and prepare them for use on ARES.

Since the robot does not have enough on-board memory to store the path, the path was sent to
1https://github.com/zhm-real/PathPlanning

66

https://github.com/zhm-real/PathPlanning

the robot at 50Hz, the same frequency as the controller. The robot would receive a position to

move to, attempt to reach it and then receive the next position along the trajectory at its next time

step. For ARES to maintain its trajectory accurately, the speed required to maintain the trajectory

cannot exceed the robot’s maximum speed. Therefore the script created intermediate steps in the

generated path such that when stepped through at 50Hz, the maximum speed of the robot would

not exceed 0.3 m s−1. When the robot reached one of the set positions, the script inserted the same

point multiple times, causing the robot to wait at the position for a set amount of time. In all tests,

the robot waited for 160 s at each position to take measurements. The result is a total trajectory

execution time of 24.6 min giving approximately five minutes for batteries to be changed and data

to be collected between tests.

5.1.3 Experiment

Testing was carried out over two periods. The first period lasted from 1530 EDT on October 2,

2020, until 1000 on October 3, 2020, while the second period was executed on October 8, 2020,

from 0800 to 1530. Originally the experiment was expected to be run a full 24 hours from October

2nd to October 3rd; however, the experimenter could not stay awake to reset the robot at 1030 on

the 3rd, so the last eight hours of testing was moved to a separate day. October 8th was chosen both

due to the outdoor environment being similar to the previous testing period and the need to wait for

a COVID test to return. The second set of testing began at 0800 to properly capture the four-hour

period starting at 0800. This will become more important later as the increase in temperature starts

at approximately 0730, allowing the data starting from 0800 to capture the changing environment

more accurately.

Tests were executed at the start of each hour and half-hour, creating a data set for the envi-

ronment. One minute after the robot had finished its run, it was placed back at the start point in

preparation for the next run. One of the two batteries was changed and charged on the hour, re-

67

sulting in each battery running for two hours before being re-charged. While the batteries should

last over eight hours of run time in theory, the batteries were changed often to avoid any chance

of over-drain since the batteries are LiPos and known to be damaged when over-drained. Every

four hours, the data was collected from the CR6 data-logger and checked to ensure no data was

missing.

It should be noted that for the run starting at 1930, the robot was interfered with by a moved

chair. This caused ARES to fail to reach positions 3 and 4; therefore, these positions are excluded

from data analysis.

5.2 Data Processing

Before the results can be analyzed, the data must be cleaned and processed. Since the positional

data is collected locally on the computer and the environmental data is collected using the CR6

data-logger, the data sets are combined using the timestamps as indices. While the positional data

is guaranteed to be collected starting exactly on the second, the CR6 data-logger data can start at

any time, so the nearest earlier time in the positional data is combined with the CR6 data-logger

data. Once all 24 hours of data had been combined, it is split into half-hour windows corresponding

with each run. Each half-hour window is then re-indexed by position and saved in a file named

using the start time of the run (i.e. 08-30). It should be noted that the data collected was removed

while the robot was travelling between measurement locations. The first and last 5 seconds of data

at each point are removed to remain certain that there is no data while moving included in the

analysis, and the effect from robot movements on the environment is minimized.

A second python script was written for data analysis. The script first read all the data into

pandas MultiIndex data-frames, allowing the data to be indexed both by the start time of the run and

the position where the data was collected. Data for each position is used to calculate the average

wind velocity components in the x, y, and z directions along with the average total wind speed, the

68

average relative humidity, and the average temperature as read by the ultrasonic anemometer and

the HMP60 sensor. The ultrasonic temperature data was plotted against the HMP60 temperature

data to create a calibration curve. This adjustment was applied to the ultrasonic temperatures

and used for the rest of the analysis. The ultrasonic temperature was used instead of the HMP60

temperature data since the HMP60 sensor has a large thermal mass, causing a slower response to

temperature changes. With the short measurement period at each point, the temperature sensor

does not have time to fully reach equilibrium resulting in inaccurate readings. For this reason, the

calibrated ultrasonic temperature readings are used for analysis.

With the averages calculated, the x, y, z components of wind velocity, and ultrasonic tempera-

ture were detrended and used to calculate the U , V , W , and ultrasonic temperature variances, the

total turbulent kinetic energy of the air, and the covariances between U and V , U and W , V and

W , U and temperature, V and temperature, and W and temperature. As discussed in Section 1.1.5

the systematic error can be calculated using (1.1) and the random error using (1.2) but first, the

integral time scales must be determined. The integral time scales are calculated by finding the first

zero-crossing of the auto-correlation or cross-auto-correlation functions. As discussed in Section

2.2.2 these functions can be calculated according to (2.22). As expected, most integral time scales

are on the order of a few seconds, with the largest time scales being on the order of tens of seconds,

seldom larger than 20 seconds. The variances and covariances are scaled using the systematic error

for each point and measurement window.

5.3 Results

With the data collected and processed, analysis can be performed. The results are split into two

parts, the averages over time and the turbulent statistics of each measured variable at each point in

the room. All plots begin at 0800 and cover a full 24-hour interval.

69

5.3.1 Averages

The average wind components of the wind velocity vector in the room give a good picture of

how the air is moving. Starting with the U component, as seen in Figure 5.2 there is minimal air

movement at any of the measurement locations with the wind velocity vector component rarely

exceeding an average of 0.1 m s−1. This is logical since the vents push air upwards near the

windows resulting in a low x component of the wind velocity (U).
16

-00
17

-00
18

-00
19

-00
20

-00
21

-00
22

-00
23

-00
00

-00
01

-00
02

-00
03

-00
04

-00
05

-00
06

-00
07

-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.10
0.08
0.06
0.04
0.02
0.00
0.02

U
 [m

 s
1]

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.2: Average U component of the wind velocity vector over a diurnal cycle.

Figure 5.3 shows a large amount of air movement in the negative y direction near positions 7

and 8. In these locations, the increased wind velocity vector is due to the fan near the window

blowing air from outside into the lab. During the day, the HVAC system is running and forcing

air through the vents. Since the fan in the window is behind a vent, during the day between

approximately 0800 and 1800, the air pushed by the fan interacts with the air being pushed up

by the vent resulting in turbulence, and therefore, a lower horizontal velocity. In the evening and

overnight, the wind speed is increased at position 8 as the HVAC turns off, and the fan can blow

air directly towards ARES. Point 7 has a reduced wind velocity in the y direction after the HVAC

70

system turns off. This may be due to the turbulence created by the HVAC system widening the

fan’s area of effect. With the HVAC system turned off, the fan’s area of effect was reduced, causing

the airflow to miss point 7 while still reaching position 8. This effect is seen in the wind velocity

component in the z direction (W) as well, although to a lesser degree, shown in Figure 5.4.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.5

0.4

0.3

0.2

0.1

0.0

V
[m

 s
1]

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.3: Average V component of the wind velocity vector over a diurnal cycle.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.10

0.05

0.00

0.05

0.10

W
 [m

 s
1]

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.4: Average W component of the wind velocity vector over a diurnal cycle.

71

Similar to the x direction, all other measured locations have very low average V due to little

air being input to the system through the HVAC system.

The air is quite stagnant in the z direction except for at positions 4 and 8. At position 4,

there is an updraft likely caused by a heavily-used computer acting as a heat source. This is

confirmed in Figure 5.5 as position 4 is warmer than the rest of the room. Position 8 experiences

a downward draft, likely due to a combination of two factors. First, the fan in the window is tilted

upwards, causing the air to reach the ceiling and then be redirected back down towards position 8.

Additionally, cool air is being pulled in from outside, which tends to fall towards the floor, causing

a larger downdraft at position 8. It should be noted that while there is a notable negative W at

position 8, it is still less than a fifth of V in magnitude.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

292

293

294

295

296

T U
S [

K]

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.5: Average ultrasonic temperature over a diurnal cycle.

The total average wind speed S is calculated according to (2.17). As expected, position 8 has

the largest total average wind speed by far, which is dominated by V . Position 7 is close to position

8, and therefore also experiences some higher than average wind speeds. Position 4 has a slightly

higher total average wind speed due to the rising air from the heat source. In general, wind speeds

72

in the room are measured around or below 0.1 m s−1 throughout the day in the room with the

exception of position 8.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.1

0.2

0.3

0.4

0.5

S
[m

 s
1]

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.6: Average wind speed over a diurnal cycle.

Two measurements were made for temperature, one using the ultrasonic anemometer tempera-

ture reading and one from a platinum resistance thermometer in the HMP60 sensor. As previously

mentioned, the ultrasonic anemometer measures temperature without any thermal mass, allowing

for measurements of each location’s instantaneous temperature, giving it an advantage over the

slower measurement time of the HMP60 sensor and is used for further analysis. A plot of the

ultrasonic temperature and temperature read by the HMP60 sensor can be found in Figures 5.5 and

5.7 respectively. It should be noted that the ultrasonic temperature was calibrated using data from

the HMP60 platinum resistance thermometer.

The temperature at position 4 is a fraction of a Kelvin higher than the rest of the room, likely

due to one or more nearby computers generating heat during use. As expected, position 8 has a

lower average temperature than the rest of the room due to cool air being blown into the room from

the outside with a fan. The temperature time series exhibits a strong diurnal cycle with the room

73

warming from 0730 until approximately 1200 as the room is warmed during the daytime and the

air being pulled into the room from outside rises in temperature. It should be noted that during

these experiments, the heating system was turned off, so any warming could not be caused by the

HVAC system directly. Around approximately 1800, the temperature begins to drop and continues

to do so through the night as the fan blows cool air into the room from outside, slowly lowering the

average temperature. There is a large drop in temperature at the 1530 mark; however, this is due

to the two different days tests were run on and not a physical phenomenon. This sudden change at

1530 can be seen in other graphs as well.

16-00
17-00

18-00
19-00

20-00
21-00

22-00
23-00

00-00
01-00

02-00
03-00

04-00
05-00

06-00
07-00

08-00
09-00

10-00
11-00

12-00
13-00

14-00
15-00

Time [EDT]

292

293

294

295

296

T H
M

P6
0 [

K]

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.7: Average HMP60 temperature over a diurnal cycle.

Finally, the average relative humidity is plotted in Figure 5.8. The relative humidity at all

points is fairly consistent throughout the diurnal cycle, only varying by a few percent throughout

the day. There is a drop in the relative humidity during the morning hours, likely due to the rising

temperature, which, using psychrometric considerations, will decrease the relative humidity. As

the day moves past 1200, however, the relative humidity moves back to near 33% as the room

balances with the rest of the building through the HVAC system. There is a slight divergence of

74

relative humidities during the night, with the positions closer to the open window having a slightly

lower relative humidity than positions further from the window. This is caused by a difference

in relative humidity inside and outside. The outside air is both cooler and has a lower relative

humidity which manifests as a gradient in relative humidity across the room. The highest average

relative humidity is found at position 1, which may be caused by the experimenter introducing

extra moisture into the air.

16
-0

0
17

-0
0

18
-0

0
19

-0
0

20
-0

0
21

-0
0

22
-0

0
23

-0
0

00
-0

0
01

-0
0

02
-0

0
03

-0
0

04
-0

0
05

-0
0

06
-0

0
07

-0
0

08
-0

0
09

-0
0

10
-0

0
11

-0
0

12
-0

0
13

-0
0

14
-0

0
15

-0
0

Time [EDT]

31

32

33

34

RH
 [%

]

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.8: Average relative humidity over a diurnal cycle.

5.3.2 Variances and Covariances

A few interesting trends show up when looking at each variable’s variances (or covariance of two

variables). It should be noted that as discussed in section 2.2.1 the variance in wind velocity vector

components is normalized using the average total wind speed S over the entire room during the

time interval.

Variance in U , shown in Figure 5.9, confirms that the air in the room is fairly slow-moving

except for the area where the fan is placed. Turbulence from the fan creates an area of higher

75

variance around positions 7 and 8. This effect is seen again in the variance of V , although in

this case, it is much more strongly seen since this is the direction in which the fan is blowing air.

Interestingly position 7 has minimal variance in V likely since it is just barely in the area of effect

from the fan during the day and not in the area of effect during the evening and overnight. This

manifests as position 7 having a normalized variance in V of approximately 0.4 during the day

while dropping nearly to 0 at night.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.0

0.5

1.0

1.5

2.0

u2 / S
2

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.9: Normalized wind velocity vector variance in the x direction over a diurnal cycle.

76

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0

1

2

3

4
v2 / S

2
p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.10: Normalized wind velocity variance in the y direction over a diurnal cycle.

Variance inW is significantly smaller than in U and V . Position 8 sees significant variance due

to the fan pushing air unevenly through the location. Position 7 sees some variance inW due to the

fan but to a lesser degree. Position 4 shows greater variance due to rising hot air from the computer

at the workstation. Position 1 has seen slightly higher than usual variances in all directions, likely

due to the experimenter sitting at a computer approximately two feet from the platform causing an

increase in variance due to their movement.

77

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
w

2 / S
2

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.11: Normalized wind velocity vector variance in the z direction over a diurnal cycle.

The variance of temperature, shown in Figure 5.12, remains fairly constant throughout the

workday due to the HVAC system keeping the room’s air well-mixed; however, in the evening

and overnight, the cold air being forced into the room mixes with the warm air creating a larger

variance in temperature. This effect is seen strongly at position 8, where the mixing first occurs.

There is also a notable temperature variance at position 4 because the heated air rising to the sensor

mixes with the cooler air creating warm and cool parcels of air that move past the sensor.

78

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
t2 U

S/(
T)

2
p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.12: Normalized ultrasonic temperature variance over a diurnal cycle.

The turbulent kinetic energy (k) provides a good representation of how turbulent the air is. As

shown in Figure 5.13, most of the room is fairly stable with a normalized k below 0.5; however,

positions 7 and 8 show large normalized k values due to the fan inducing turbulence in the room.

Interestingly it appears that the HVAC system reduces the k about position 8 slightly as during the

day, the average normalized k ranges between 1.5 and 2, while at night, the normalized k is above

2. There is also a slight increase in normalized k at position 4 due to the hot air rising and creating

small eddy currents.

79

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.0

0.5

1.0

1.5

2.0

2.5

k/
S2

p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.13: Normalized turbulent kinetic energy over a diurnal cycle.

Most of the covariances continue to tell the same story, that at position 8 there is notable

covariance between the vertical component of the wind velocity vector and temperature, and that

position 7 sees some of the same covariance, but to a lesser degree. For this reason, a number of

the covariance graphs are included in Appendix C.1. The covariance between wind velocity in the

z direction and temperature strongly shows the existence of a heat source at position 4. Due to the

rising air and increased temperature, the covariance between W and T is raised.

80

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.1

0.0

0.1

0.2

0.3

0.4

0.5
w

t/(
S

T)
p1
p2
p3
p4
p5
p6
p7
p8

Figure 5.14: Normalized covariance between the wind velocity in the z direction and ultrasonic

temperature over a diurnal cycle.

5.4 Thermal Comfort

The thermal comfort of people working in the lab is of particular interest, and with the data col-

lected, the predicted mean vote (PMV) and predicted percent dissatisfied (PPD) are calculated at

each point over the course of a diurnal cycle. In typical office spaces, the area is only used during

the day; however, since this lab is occupied by graduate students who often run on unconventional

schedules, data from 0600 to 2359 should be investigated. In some cases, people are in the lab

throughout the night, so to cover those cases, the PMVs and PPDs are plotted for the full 24 hour

period. It should be noted that the mean radiant temperature is assumed to be the same as the

ambient air temperature for all cases. While not perfectly accurate, this assumption is reasonable

as discussed in Chapters 1 and 2.

A number of different metabolic rates and clothing levels are investigated. At positions 1, 4,

6, and 7, people are typically sitting down working on a computer corresponding to a metabolic

81

rate of 1.1 met. At positions 2, 3, 5, and 8, people are typically standing working on a whiteboard

or walking at a leisurely pace for a short period of time, resulting in a metabolic rate of 1.7 met.

These tests were conducted as the weather was beginning to reach cold temperatures, resulting in

different clothing levels depending on the person. Three clothing levels are investigated: a person

wearing trousers with a short-sleeve shirt, socks and shoes giving a clothing level of 0.57 clo; a

person wearing sweat pants and a long sleeve sweater with socks and shoes giving a clothing level

of 0.74 clo; and a person wearing trousers, a long sleeve shirt, and a jacket with socks and shoes

giving a clothing level of 0.94 clo. These different cases are listed in Table 5.1.

Table 5.1: List of metabolism (met) and clothing (clo) levels used for each test case.
Test Case 1 2 3 4 5 6

Metabolism 1.1 1.1 1.1 1.7 1.7 1.7
Clothing 0.57 0.74 0.96 0.57 0.74 0.96

Beginning with case 1, where the subjects are sitting at their desks working on a computer

wearing light clothing, during the day the PMV is approximately between -0.6 and -1.4, which

corresponds to the room being slightly cool. As is supported by the PPD in Figure 5.16, during

normal working hours, most people would find the temperature in the room acceptable; however,

into the evening and through the night the room becomes quite cold, leading to the majority of

people finding the room cold between 0000 and 0730. The room’s coolness was noted by the

experimenter causing him to wear a sweater from 1900 to 0900.

82

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6
PM

V
p1
p4
p6
p7

Figure 5.15: PMV with metabolism = 1.1 met and clothing = 0.57 clo over a diurnal cycle.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

20

30

40

50

60

70

PP
D

[%
]

p1
p4
p6
p7

Figure 5.16: PDD with metabolism = 1.1 met and clothing = 0.57 clo over a diurnal cycle.

Increasing clothing to a long sleeve sweater increases the PMV during working hours by ap-

proximately -0.3, as seen in Figure 5.17. In turn, the PPD during working hours is decreased to

approximately 10% nearing an optimal environment. The shape of the PMV strongly resembles the

83

shape of the mean temperature in Figure 5.5 indicating that the main factor to thermal comfort in

low wind speed environments is the ambient air temperature. While the experimenter was wearing

a sweater in the evening and through the night in order to remain comfortable, at approximately

0300 the experimenter became too cold for comfort.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

1.4

1.2

1.0

0.8

0.6

0.4

PM
V

p1
p4
p6
p7

Figure 5.17: PMV with metabolism = 1.1 met and clothing = 0.74 clo over a diurnal cycle.

84

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

10

20

30

40

50
PP

D
[%

]
p1
p4
p6
p7

Figure 5.18: PDD with metabolism = 1.1 met and clothing = 0.74 clo over a diurnal cycle.

Increasing the clothing again to wearing a jacket results in the best thermal comfort, with the

PMV reaching neutrality in the afternoon. The PPD is reduced to sub 10% throughout the day and

remains there until approximately 2000, well after most people would have left the lab. Even better,

the PPD reaches 5% between 1000 and 0300, indicating an optimal thermal comfort environment.

Unsurprisingly, overnight the PPD increases significantly but still remains comfortable to the ma-

jority of people. Comparing different clothing levels shows a wide range of thermal comforts are

possible simply by adjusting what is worn. This puts an emphasis on keeping environmental vari-

ables stable and allowing individuals to change their comfort through clothing choice instead of

through cooling and heating of the environment.

85

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

1.0

0.8

0.6

0.4

0.2

0.0
PM

V
p1
p4
p6
p7

Figure 5.19: PMV with metabolism = 1.1 met and clothing = 0.96 clo over a diurnal cycle.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

5

10

15

20

25

PP
D

[%
]

p1
p4
p6
p7

Figure 5.20: PDD with metabolism = 1.1 met and clothing = 0.96 clo over a diurnal cycle.

Cases 4-6 show that the PMV significantly increases due to an increase in metabolism. Figures

5.21 through 5.26 show the PMV and PPD with a metabolism of 1.7 met. The PMV at positions 2,

3, and 5 are slightly warm during the day but slowly reduce overnight as the room cools. Position

86

8 has a significantly lower thermal comfort due to the fan creating a high wind speed during the

day and producing higher wind speeds and a low-temperature zone during the evening and night.

On average, position 8 has a PMV 0.25 to 0.5 lower than other areas of the room where people are

typically moving about. During the day, the PPD at position 8 is near or at 5%, the lowest the PPD

can be, indicating excellent thermal comfort; however, in the evening the cool air significantly

reduces the PPD. Positions 2, 3, and 5 are fairly comfortable while moving throughout the day

and night, never rising above 10%. Interestingly, the PPD is higher at these positions than point 8

during the day, indicating that a reduction in temperature in the room may result in better thermal

comfort across the room as a whole. This is confirmed by the existence of the fan in the window,

which was placed there due to lab members finding the room too hot during the day.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

1.00

0.75

0.50

0.25

0.00

0.25

PM
V

p2
p3
p5
p8

Figure 5.21: PMV with metabolism = 1.7 met and clothing = 0.57 clo over a diurnal cycle.

87

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

5

10

15

20

25

30

35
PP

D
[%

]
p2
p3
p5
p8

Figure 5.22: PDD with metabolism = 1.7 met and clothing = 0.57 clo over a diurnal cycle.

Increasing the level of clothing also increases the PMV across the board and, in fact, worsens

the PPD at all points, with the PPD reaching 12% and 18% in cases 5 and 6 during the day,

respectively. These results can be seen in Figures 5.24 and 5.26. The experimenter wore clothing

with a clothing value of around 0.74 during the night and kept himself moving about in order to

remain comfortable. This behaviour is confirmed in Figure 5.24 where the PPD tends toward 5%

overnight while not directly in the fan’s path.

88

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.6

0.4

0.2

0.0

0.2

0.4

0.6
PM

V
p2
p3
p5
p8

Figure 5.23: PMV with metabolism = 1.7 met and clothing = 0.74 clo over a diurnal cycle.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

6

8

10

12

14

16

PP
D

[%
]

p2
p3
p5
p8

Figure 5.24: PDD with metabolism = 1.7 met and clothing = 0.74 clo over a diurnal cycle.

89

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.2

0.0

0.2

0.4

0.6

0.8
PM

V
p2
p3
p5
p8

Figure 5.25: PMV with metabolism = 1.7 met and clothing = 0.96 clo over a diurnal cycle.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

6

8

10

12

14

16

18

PP
D

[%
]

p2
p3
p5
p8

Figure 5.26: PDD with metabolism = 1.7 met and clothing = 0.96 clo over a diurnal cycle.

90

5.5 Platform viability

These tests show that while improvements can be made on the sensing platform, it effectively

quantifies the indoor environment. After collecting and processing data, small adjustments can be

made to the environmental control system of a room to make sure thermal comfort is achieved.

In the Mechatronics lab, high temperatures during the day have caused the need for a cooling fan

to be placed in the room; however, the single point of cooling causes uneven thermal comfort.

A better solution would be to increase cooling to the room from the HVAC system, lowering the

temperature evenly and creating a more comfortable environment.

91

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Sensing of the indoor environment has traditionally been accomplished using a large number of

static sensors causing measurements of the indoor environment to be prohibitively expensive. To

reduce cost, the Autonomous Robotic Environmental Sensor (ARES) was developed, providing a

low-cost, easy-to-use, robust alternative to static sensors. ARES was developed from the ground

up, starting by prototyping a three-wheel drive omniwheel robot with custom hardware and subse-

quently building the platform to carry any arrangement of environmental sensors.

In order to accurately position ARES, a feedback linearization controller and a sliding mode

controller were developed based on the derived robot kinematics with wheel slip. Through ex-

perimentation with a VICON system, the sliding mode controller was found to provide signif-

icantly better performance than the feedback linearization controller, with a position RMSE of

approximately 4 mm in the x and y directions. This RMSE is 4-5 times lower than the feedback

linearization controller. In addition, the sliding mode controller reaches the desired state signifi-

cantly faster than the feedback linearization controller, allowing ARES to spend more time taking

measurements of the environment and less time moving between measurement points.

92

ARES was used to measure environmental variables over a full diurnal cycle at eight positions

in the mechatronics lab at the University of Guelph. Outfitted with an ultrasonic anemometer,

temperature sensor, and relative humidity sensor, ARES measured environmental variables used to

predict thermal comfort. The robot acted autonomously when taking measurements, only requiring

small positional adjustments between measurement periods and changing of batteries. Statistical

analysis of the collected environmental data helped identify areas with higher than average wind

speeds, low temperatures, and the location of heat sources. Data collected was also used to predict

thermal comfort and identified areas of the room that a group of people would find too cold or

too hot throughout the day. This was shown most clearly by the significant decrease in thermal

comfort near the back of the room due to a window fan creating a cold draft and the gradient in

thermal comfort caused by the cooling of one side of the room.

The creation of a robust, modular, autonomous environmental sensing platform has been ac-

complished through the development of ARES. The use of omniwheels allows ARES to navigate

tight spaces and avoid obstacles easily. Due to the platform’s modularity, it can be used for any

number of sensing tasks, from thermal comfort to gas source localization to indoor environmen-

tal quality with minimal hardware adjustments. It was shown that ARES is capable of taking

meaningful measurements of the environment, a task that would otherwise require multiple sets of

expensive sensors.

6.2 Future Work

ARES is a flexible platform that can be used in many indoor environmental sensing scenarios,

enabling the platform for multiple uses in future research. If used for further research in thermal

comfort, a mean radiant temperature sensor should be added to eliminate the small error caused by

assuming the mean radiant temperature is the same as the ambient air temperature. By including

more anemometers at different heights, comfort factors such as floor drafts can also be measured

93

and quantified.

The robot can perform tasks over a longer period of time without human intervention if more

sensors such as gyroscopes or Light Detection and Ranging (LIDAR) sensors are used to more

accurately determine the robot’s position. Additionally, the use of higher-speed motors would

allow for larger rooms to be measured in the same period of time. Finally, more complex controllers

such as non-linear model predictive control could be implemented, creating a more robust control

system resulting in more precise movement.

94

References

M. Ahmadi-Baloutaki and A. A. Aliabadi. A Very Large-Eddy Simulation Model Using a Re-
ductionist Inlet Turbulence Generator and Wall Modelling for Stable Atmospheric Boundary
Layers. Fluid Dynamics, 56(3):413–432, 2021. doi: 10.1134/S0015462821020026.

AL-Taharwa. A Mobile Robot Path Planning Using Genetic Algorithm in Static Environment.
Journal of computer science, 4(4):341–344, 2008. doi: 10.3844/jcssp.2008.341.344.

V. Alakshendra and S. S. Chiddarwar. A Robust Adaptive Control of Mecanum Wheel Mo-
bile Robot: Simulation and Experimental Validation. In IEEE International Conference on
Intelligent Robots and Systems, pages 5606–5611, Daejeon, Korea, November 2016. doi:
10.1109/IROS.2016.7759824.

A. A. Aliabadi, S. N. Rogak, K. H. Bartlett, and S. I. Green. Preventing Airborne Disease Trans-
mission: Review of Methods for Ventilation Design in Health Care Facilities. Advances in
Preventive Medicine, 2011:1–21, 2011. doi: 10.4061/2011/124064.

A. A. Aliabadi, R. M. Staebler, M. Liu, and A. Herber. Characterization and Parametrization
of Reynolds Stress and Turbulent Heat Flux in the Stably-Stratified Lower Arctic Troposphere
Using Aircraft Measurements. Boundary-Layer Meteorology, 161(1):99–126, 2016. doi: 10.
1007/s10546-016-0164-7.

ASHRAE. Standard 55-2004 (2004) Thermal environmental conditions for human occupancy.
Atlanta: American Society of Heating Refrigerating and Air-Conditioning Engineers Inc, 2017.

M. J. Barrett and D. K. Hollingsworth. On the calculation of length scales for turbulent heat
transfer correlation. Journal of Heat Transfer, 123(5):878–883, 2001. doi: 10.1115/1.1391277.

C. Benton, F. Bauman, and U. Fountain, M. A Field Measurement System for the Study of Thermal
Comfort. ASHRAE Transaction, 96(1):623–633, 1990.

A. V. Borisov, A. A. Kilin, and I. S. Mamaev. Dynamics and control of an omniwheel vehicle.
Regular and Chaotic Dynamics, 20(2):153–172, 2015. doi: 10.1134/S1560354715020045.

A. Bramanta, A. Virgono, and R. E. Saputra. Control system implementation and analysis for
omniwheel vehicle. In International Conference on Control, Electronics, Renewable Energy,
and Communications, Proceedings, pages 265–270, Yogyakarta, Indonesia, January 2017. doi:
10.1109/ICCEREC.2017.8226711.

95

A. Bulińska, Z. Popiołek, and Z. Buliński. Experimentally validated CFD analysis on sampling re-
gion determination of average indoor carbon dioxide concentration in occupied space. Building
and Environment, 72:319–331, 2014. doi: 10.1016/j.buildenv.2013.11.001.

J. Canny and J. Reif. New Lower Bound Techniques for Robot Motion Planning Problems. In
Annual Symposium on Foundations of Computer Science (Proceedings), pages 49–60, Los An-
geles, USA, July 1987. IEEE. doi: 10.1109/sfcs.1987.42.

Y. Chen, H. Cai, Z. Chen, and Q. Feng. Using multi-robot active olfaction method to locate time-
varying contaminant source in indoor environment. Building and Environment, 118:101–112,
2017. doi: 10.1016/j.buildenv.2017.03.030.

M. Dawe, P. Raftery, J. Woolley, S. Schiavon, and F. Bauman. Comparison of mean radiant and air
temperatures in mechanically-conditioned commercial buildings from over 200,000 field and
laboratory measurements. Energy and Buildings, 206:109582, 2020. doi: 10.1016/j.enbuild.
2019.109582.

M. De Villiers and N. S. Tlale. Development of a control model for a four wheel mecanum vehicle.
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 134(1):4–9,
2012. doi: 10.1115/1.4005273.

G. Dozier, A. Esterline, A. Homaifar, and M. Bikdash. Hybrid evolutionary motion planning via
visibility-based repair. In IEEE International Conference on Evolutionary Computation, pages
507–511, Indianapolis, USA, August 1997. doi: 10.1109/ICEC.1997.592363.

P. O. Fanger. Thermal comfort: Analysis and applications in environmental engineering. Applied
Ergonomics, 3(3):181, sep 1972. doi: 10.1016/S0003-6870(72)80074-7.

V. Földváry Ličina, T. Cheung, H. Zhang, R. de Dear, T. Parkinson, E. Arens, C. Chun, S. Schi-
avon, M. Luo, G. Brager, P. Li, S. Kaam, M. A. Adebamowo, M. M. Andamon, F. Babich,
C. Bouden, H. Bukovianska, C. Candido, B. Cao, S. Carlucci, D. K. Cheong, J. H. Choi,
M. Cook, P. Cropper, M. Deuble, S. Heidari, M. Indraganti, Q. Jin, H. Kim, J. Kim, K. Ko-
nis, M. K. Singh, A. Kwok, R. Lamberts, D. Loveday, J. Langevin, S. Manu, C. Moosmann,
F. Nicol, R. Ooka, N. A. Oseland, L. Pagliano, D. Petráš, R. Rawal, R. Romero, H. B. Ri-
jal, C. Sekhar, M. Schweiker, F. Tartarini, S. ichi Tanabe, K. W. Tham, D. Teli, J. Toftum,
L. Toledo, K. Tsuzuki, R. De Vecchi, A. Wagner, Z. Wang, H. Wallbaum, L. Webb, L. Yang,
Y. Zhu, Y. Zhai, Y. Zhang, and X. Zhou. Development of the ASHRAE Global Thermal Comfort
Database II. Building and Environment, 142:502–512, 2018. doi: 10.1016/j.buildenv.2018.06.
022.

Y. Fukazawa and H. Ishida. Estimating gas-source location in outdoor environment using mobile
robot equipped with gas sensors and anemometer. In Proceedings of IEEE Sensors, pages 1721–
1724, Christchurch, New Zealand, 2009. IEEE. doi: 10.1109/ICSENS.2009.5398495.

96

J. Haberl, H. Davies, B. Owens, and B. Hunn. ASHRAE’s New Performance Measurement Proto-
cols for Commercial Buildings. Technical report, Energy Systems Laboratory, Berlin, Germany,
October 2008.

D. Heinzerling, S. Schiavon, T. Webster, and E. Arens. Indoor environmental quality assessment
models: A literature review and a proposed weighting and classification scheme. Building and
Environment, 70:210–222, 2013. doi: 10.1016/j.buildenv.2013.08.027.

J. H. Holland. Adaptation in Natural and Artificial Systems : An Introductory Analysis with Appli-
cations to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge, USA, 1 edition,
1992.

M. Jin, S. Liu, S. Schiavon, and C. Spanos. Automated mobile sensing: Towards high-granularity
agile indoor environmental quality monitoring. Building and Environment, 127:268–276, 2018.
doi: 10.1016/j.buildenv.2017.11.003.

J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International Conference on
Neural Networks, pages 1942–1948, Perth, Australia, August 1995.

A. Kilin, P. Bozek, Y. Karavaev, A. Klekovkin, and V. Shestakov. Experimental investigations of
a highly maneuverable mobile omniwheel robot. International Journal of Advanced Robotic
Systems, 14(6):1–9, 2017. doi: 10.1177/1729881417744570.

S. Koenig and M. Likhachev. D* Lite. In Proceedings of the National Conference on Artificial
Intelligence, pages 476–483, Edmonton, Canada, July 2002.

D. H. Lenschow, J. Mann, and L. Kristensen. How long is long enough when measuring fluxes
and other turbulence statistics? Journal of Atmospheric & Oceanic Technology, 11(3):661–673,
1994. doi: 10.1175/1520-0426(1994)011〈0661:HLILEW〉2.0.CO;2.

M. Likhachev and D. Ferguson. Planning long dynamically feasible maneuvers for autonomous
vehicles. International Journal of Robotics Research, 28(8):933–945, 2009. doi: 10.1177/
0278364909340445.

L.-C. Lin and H.-Y. Shih. Modeling and Adaptive Control of an Omni-Mecanum-Wheeled Robot.
Intelligent Control and Automation, 04(02):166–179, 2013. doi: 10.4236/ica.2013.42021.

W. Liu, Y. Zhang, and Q. Deng. The effects of urban microclimate on outdoor thermal sensation
and neutral temperature in hot-summer and cold-winter climate. Energy and Buildings, 128:
190–197, 2016. doi: 10.1016/j.enbuild.2016.06.086.

Y. Liu, R. L. Williams, and J. J. Zhu. Integrated control and navigation for omni-directional mobile
robot based on trajectory linearization. In Proceedings of the American Control Conference,
pages 2153–2158, New York City, USA, 2007. doi: 10.1109/ACC.2007.4282967.

T. Lozano-Pérez. Spatial Planning: A Configuration Space Approach. IEEE Transactions on
Computers, C-32(2):108–120, 1983. doi: 10.1109/TC.1983.1676196.

97

T. Lozano-Pérez and M. A. Wesley. An Algorithm for Planning Collision-Free Paths Among
Polyhedral Obstacles. Communications of the ACM, 22(10):560–570, 1979. doi: 10.1145/
359156.359164.

J. Nicole and K. McCartney. Smart controls and thermal comfort project. SCATs final report.
Technical report, Oxford, Headington, UK, 2000.

P. V. Nielsen. Fifty years of CFD for room air distribution. Building and Environment, 91:78–90,
2015. doi: 10.1016/j.buildenv.2015.02.035.

J. D. Posner, C. R. Buchanan, and D. Dunn-Rankin. Measurement and prediction of indoor air flow
in a model room. Energy and Buildings, 35(5):515–526, 2003. doi: 10.1016/S0378-7788(02)
00163-9.

R. D. Puits, C. Resagk, and A. Thess. Thermal boundary layers in turbulent Rayleigh-Bénard
convection at aspect ratios between 1 and 9. New Journal of Physics, 15:013040, 2013. doi:
10.1088/1367-2630/15/1/013040.

Y. Q. Qin, D. B. Sun, N. Li., and Y. G. Cen. Path planning for mobile robot using the particle
swarm optimization with mutation operator. In Proceedings of 2004 International Conference
on Machine Learning and Cybernetics, number August, pages 2473–2478, Shanghai, China,
January 2004. doi: 10.1109/icmlc.2004.1382219.

P. Raja and S. Pugazhenthi. Optimal path planning of mobile robots: A review. International
Journal of the Physical Sciences, 7(9):1314–1320, 2012. doi: 10.5897/ijps11.1745.

M. Reggente, A. Mondini, G. Ferri, B. Mazzolai, A. Manzi, M. Gabelletti, P. Dario, and A. J.
Lilienthal. The DustBot system: Using mobile robots to monitor pollution in pedestrian area.
Chemical Engineering Transactions, 23(June 2014):273–278, 2010. doi: 10.3303/CET1023046.

S. Schiavon, B. Yang, Y. Donner, V. W.-C. Chang, and W. W. Nazaroff. Thermal comfort, perceived
air quality, and cognitive performance when personally controlled air movement is used by
tropically acclimatized persons. Indoor Air, 27(3):690–702, 2017. doi: 10.1111/ina.12352.

G. Schiller, E. Arens, F. Bauman, C. Benton, M. Fountain, and T. Doherty. A field study of thermal
environments and comfort in office building. ASHRAE Transactions, 94 Part 2, 1988.

X. Shan and W.-Z. Lu. An integrated approach to evaluate thermal comfort in air-conditioned
large-space office. Science and Technology for the Built Environment, 0(0):1–15, 2020. doi:
10.1080/23744731.2020.1796420.

R. Siegwart, I. R. Nourbakhsh, D. Scaramuzza, and R. C. Arkin. Introduction to Autonomous
Mobile Robots. MIT Press, Cambridge, Massachusetts, 2nd edition, 2011.

M. P. Spilak, T. Sigsgaard, H. Takai, and G. Zhang. A comparison between temperature-controlled
laminar airflow device and a room air-cleaner in reducing exposure to particles while asleep.
PLoS ONE, 11:1–21, 2016. doi: 10.1371/journal.pone.0166882.

98

D. Stonier, S. H. Cho, S. L. Choi, N. S. Kuppuswamy, and J. H. Kim. Nonlinear slip dynamics
for an omniwheel mobile robot platform. In Proceedings - IEEE International Conference on
Robotics and Automation, pages 2367–2372, Rome, Italy, April 2007. doi: 10.1109/ROBOT.
2007.363673.

Z. Sun, H. Xie, J. Zheng, Z. Man, and D. He. Path-following control of Mecanum-wheels om-
nidirectional mobile robots using nonsingular terminal sliding mode. Mechanical Systems and
Signal Processing, 147:107128, 2020. doi: 10.1016/j.ymssp.2020.107128.

H. Takimoto, A. Sato, J. F. Barlow, R. Moriwaki, A. Inagaki, S. Onomura, and M. Kanda. Particle
Image Velocimetry Measurements of Turbulent Flow Within Ouutdoor and Indoor Urban Scale
Models and Flushing Motions in Urban Canopy Layers. Boundary-Layer Meteorol, 140:295–
314, 2011. doi: http://dx.doi.org.subzero.lib.uoguelph.ca/10.1007/s10546-011-9612-6.

K. J. Udupa and I. Murthy. New Concepts for Three-Dimensional Shape Analysis. IEEE Transac-
tions on Computers, C-26(10):1043–1049, 1977.

H. Widyantara, M. Rivai, and D. Purwanto. Gas Source Localization Using an Olfactory Mobile
Robot Equipped With Wind Direction Sensor. In 2018 International Conference on Computer
Engineering, Network and Intelligent Multimedia, CENIM 2018 - Proceeding, pages 66–70,
Surabaya, Indonesia, May 2018. doi: 10.1109/CENIM.2018.8711381.

D. E. Williams. Low Cost Sensor Networks: How Do We Know the Data Are Reliable? ACS
Sensors, 4(10):2558–2565, 2019. doi: 10.1021/acssensors.9b01455.

L. Zhang, J. Kim, and J. Sun. Energy modeling and experimental validation of four-wheel
mecanum mobile robots for energy-optimal motion control. Symmetry, 11:1372–1386, 2019.
doi: 10.3390/sym11111372.

W. Zhang, K. Hiyama, S. Kato, and Y. Ishida. Building energy simulation considering spatial
temperature distribution for nonuniform indoor environment. Building and Environment, 63:
89–96, 2013. doi: 10.1016/j.buildenv.2013.02.007.

B. Zhao, X. Li, and Q. Yan. A simplified system for indoor airflow simulation. Building and
Environment, 38(4):543–552, 2003. doi: 10.1016/S0360-1323(02)00182-8.

D. Zhu and J.-C. Latombe. New Heuristic Algorithms for Efficient Hierarchical Path Planning.
IEEE Transaction on Robotics and Automation, 7(1):9–20, 1991. doi: 10.1109/70.68066.

A. A. Zobova and Y. V. Tatarinov. Free and controlled motions of an omniwheel vehicle. Moscow
University Mechanics Bulletin, 63(6):146–150, 2008. doi: 10.3103/S0027133008060034.

99

Appendix A

Chapter 3 Supplement

This appendix contains schematics for all custom PCBs developed for ARES. All files associated
with the PCBs can be found at https://github.com/dyerbm/OmniWheel.

A.1 Electrical Schematics

100

https://github.com/dyerbm/OmniWheel

11

22

33

44

D
D

C
C

B
B

A
A

1

U
ni

ve
rs

it
y

of
 G

ue
lp

h
50

 S
to

ne
 R

d.
 E

.
G

ue
lp

h,
 O

N
C

an
ad

a
1

12
V

 B
u

ck
 C

on
ve

rt
er

1
0.

1

20
21

-0
1-

06
12

:1
0:

44
 P

M
C

:\
U

se
rs

\j
di

ro
\D

es
kt

op
\g

it
\3

W
D

-P
C

B
s\

12
V

_B
uc

kC
on

ve
rt

er
\1

2V
_B

uc
kC

on
ve

rt
er

.S
ch

D
oc

T
it

le

S
iz

e:
N

um
be

r:

D
at

e:
F

il
e:

R
ev

is
io

n:

S
he

et
of

T
im

e:

A
4

T
R

A
C

K
/S

S
1

F
R

E
Q

2

P
L

L
IN

/M
O

D
E

3

S
G

N
D

4

S
G

N
D

5

R
U

N
6

S
E

N
S

E
-

7

S
E

N
S

E
+

8

V
F

B
9

IT
H

10

P
G

O
O

D
11

T
G

12

S
W

13

B
O

O
S

T
14

B
G

15

IN
T

V
C

C
16

E
X

T
V

C
C

17

P
G

N
D

18

V
IN

19

IL
IM

20

E
PA

D
E

PA
D

U
1

LT
C

38
07

H
FE

#P
B

F

V
ba

tt

2.
2u

F
C

1
IN

T
V

C
C

1KR
1

12
V

G
N

D

2.
2u

F
C

2

G
N

D

D
1

0.
1u

F

C
3

4.
7m

H

L
1

5mR
S

E
N

SE
12

V

1n
F

C
4

10
uF

C
5

G
N

D
G

N
D

G
N

D

1MR
2

71
.5

K
R

3

G
N

D

60
.4

K

R
4

15
.4

K

R
5

4.
7n

F

C
7

47
pF

C
8

0.
1u

F

C
9

G
N

D

IN
T

V
C

C

G
N

D

C
6

15
0u

F

Q
1

M
O

S
FE

T-
N

Q
2

M
O

S
FE

T-
N

Figure A.1: 12V buck converter schematic.

101

11

22

33

44

D
D

C
C

B
B

A
A

1

U
ni

ve
rs

it
y

of
 G

ue
lp

h
50

 S
to

ne
 R

d.
 E

.
G

ue
lp

h
O

nt
ar

io
N

1G
 2

M
7

1

12
V

 B
u

ck
 C

on
ve

rt
er

 H
ea

de
rs

1
0.

1

20
21

-0
1-

06
12

:1
1:

17
 P

M
C

:\
U

se
rs

\j
di

ro
\D

es
kt

op
\g

it
\3

W
D

-P
C

B
s\

12
V

_B
uc

kC
on

ve
rt

er
\C

on
ne

ct
or

s.
Sc

hD
oc

T
it

le

S
iz

e:
N

um
be

r:

D
at

e:
F

il
e:

R
ev

is
io

n:

S
he

et
of

T
im

e:

A
4

P
O

S
2

N
E

G
1

J4 X
T

60
-M P
O

S
2

N
E

G
1

J5 X
T

60
-M P
O

S
2

N
E

G
1

J6 X
T

60
-M

G
N

D

12
V

P
O

S
2

N
E

G
1

J1 X
T

60
-M P
O

S
2

N
E

G
1

J2 X
T

60
-M P
O

S
2

N
E

G
1

J3 X
T

60
-M

G
N

D

V
ba

tt

Figure A.2: 12V buck converter headers schematic.

102

11

22

33

44

D
D

C
C

B
B

A
A

1

U
ni

ve
rs

it
y

of
 G

ue
lp

h
50

 S
to

ne
 R

d.
 E

.
G

ue
lp

h,
 O

nt
ar

io
N

1G
 2

M
7

1

3V
3/

5V
 L

in
ea

r
R

eg
u

la
to

r

1
0.

1

20
21

-0
1-

06
12

:1
5:

05
 P

M
C

:\
U

se
rs

\j
di

ro
\D

es
kt

op
\g

it
\3

W
D

-P
C

B
s\

L
in

R
eg

5_
3.

3V
\P

C
B

_P
ro

je
ct

\L
in

R
eg

5_
3V

3.
S

ch
D

oc

T
it

le

S
iz

e:
N

um
be

r:

D
at

e:
F

il
e:

R
ev

is
io

n:

S
he

et
of

T
im

e:

A
4

V
in

3

ADJ/GND
1

V
ou

t
2

U
1

L
M

10
85

IS
-A

D
J

C
1

10
uF

C
2

10
uF

12
1

R
1

R
es

1

36
5

R
2

R
es

1

V
in

3

ADJ/GND
1

V
ou

t
2

U
2

L
M

10
85

IS
-A

D
J

C
3

10
uF

C
4

10
uF

60
4

R
3

R
es

1

1KR
4

R
es

1

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

12
V

12
V

5V 3V
3

G
N

D

1 2

P
1

H
ea

de
r

2

1 2

P
2

H
ea

de
r

2

1 2

P
3

H
ea

de
r

2

1 2

P
4

H
ea

de
r

2

3V
3

3V
3

5V 5VG
N

D

G
N

D G
N

D

G
N

D

1 2

P
5

H
ea

de
r

2

12
V

G
N

D

P
O

S
2

N
E

G
1

P
6

X
T

60
-M

12
V

G
N

D

Figure A.3: 3.3/5V linear regulator schematic.

103

11

22

33

44

D
D

C
C

B
B

A
A

1

U
ni

ve
rs

it
y

of
 G

ue
lp

h
50

 S
to

ne
 R

d.
 E

.
G

ue
lp

h,
 O

nt
ar

io
N

1G
 2

M
7

1

M
ot

or
 C

on
tr

ol
le

r

1
0.

2

20
21

-0
1-

06
12

:2
1:

50
 P

M
C

:\
U

se
rs

\j
di

ro
\D

es
kt

op
\g

it
\3

W
D

-P
C

B
s\

3W
he

el
_M

ot
or

D
ri

ve
rs

_E
nc

od
er

s\
3W

he
el

_M
ot

or
D

ri
ve

rs
_E

nc
od

er
s.

S
ch

D
oc

T
it

le

S
iz

e:
N

um
be

r:

D
at

e:
F

il
e:

R
ev

is
io

n:

S
he

et
of

T
im

e:

A
4

L
E

D
15

22
L

E
D

14
21

L
E

D
13

20
L

E
D

12
19

L
E

D
11

18
L

E
D

10
17

L
E

D
9

16
L

E
D

8
15

L
E

D
7

13
L

E
D

6
12

L
E

D
5

11
L

E
D

4
10

L
E

D
3

9
L

E
D

2
8

L
E

D
1

7
L

E
D

0
6

S
D

A
27

V
S

S
14

A
5

24
A

4
5

A
3

4
A

2
3

A
1

2
A

0
1

E
X

T
C

L
K

25
S

C
L

26
O

E
23

V
D

D
28

U
1

P
C

A
96

85
PW

/Q
90

0,
11

8

A
0

A
1

A
2

A
3

A
4

A
5

G
N

D

S
D

A

S
C

L

10
K

R
7

G
N

D

10
uF

C
1

3V
3

R
1

10
K

R
2

10
K

R
3

10
K

R
4

10
K

R
5

10
K

R
6

10
K

1
2

A
1

B
ri

dg
e1

2

A
2

B
ri

dg
e1

2

A
3

B
ri

dg
e

1
2

A
4

B
ri

dg
e1

2

A
5

B
ri

dg
e1
2

A
6

B
ri

dg
e

3V
3

3V
3

G
N

D

A
0

A
1

A
2

A
3

A
4

A
5

P
G

N
D

7
G

N
D

1
PA

D
9

O
U

T
2

8
O

U
T

1
6

V
M

5

IL
IM

4
IN

2
2

IN
1

3

U
2

D
R

V
88

71
D

D
A

R

G
N

D

33
K

R
8

G
N

D

C
2

0.
1u

F

G
N

D

12
V

P
G

N
D

7
G

N
D

1
PA

D
9

O
U

T
2

8
O

U
T

1
6

V
M

5

IL
IM

4
IN

2
2

IN
1

3

U
3

D
R

V
88

71
D

D
A

R

G
N

D

33
K

R
9

G
N

D

C
4

0.
1u

F

G
N

D

12
V

P
G

N
D

7
G

N
D

1
PA

D
9

O
U

T
2

8
O

U
T

1
6

V
M

5

IL
IM

4
IN

2
2

IN
1

3

U
4

D
R

V
88

71
D

D
A

R

G
N

D

33
K

R
10

G
N

D

C
6

0.
1u

F

G
N

D

12
V

P
W

M
+

1

P
W

M
+

2

P
W

M
+

3

P
W

M
-1

P
W

M
-2

P
W

M
-3

M
1+

M
2+

M
3+

M
1-

M
2-

M
3-

1 2 3 4 5 6

P
7

H
ea

de
r

6

1 2 3 4 5 6

P
8

H
ea

de
r

6

1 2 3 4 5 6

P
9

H
ea

de
r

6

M
3-

M
2-

M
1-

M
1+

M
2+

M
3+

G
N

D

G
N

D

G
N

D

5V 5V 5V

A
IN

3

B
IN

5

C
IN

7

D
IN

9

E
IN

11

F
IN

14

M
O

D
E

13

V
C

C
1

V
D

D
16

A
O

U
T

2

B
O

U
T

4

C
O

U
T

6

D
O

U
T

10

E
O

U
T

12

F
O

U
T

15

V
S

S
8

U
5

P
ar

t N
um

be
r:

 M
C

14
50

4B
D

R
2G

5V5V

5V
C

H
A

1

5V
C

H
A

2
5V

C
H

B
1

5V
C

H
B

2

5V
C

H
A

1

5V
C

H
A

2

5V
C

H
A

3

5V
C

H
B

1

5V
C

H
B

2

5V
C

H
B

3

3V
3C

H
A

1

3V
3C

H
A

2
3V

3C
H

B
1

3V
3C

H
B

2

P
O

S
2

N
E

G
1

J1 X
T

60
-M

12
V 5V 3V

3

G
N

D

G
N

D

G
N

D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

P
10

H
ea

de
r

7X
2

S
C

L
SD

A
3V

3C
H

A
1

3V
3C

H
A

2
3V

3C
H

A
3

3V
3C

H
B

1
3V

3C
H

B
2

3V
3C

H
B

3

3V
3

G
N

DC
3

47
uF

C
5

47
uF

C
7

47
uF

P
W

M
+

3
P

W
M

-3

5V
C

H
A

3
5V

C
H

B
3

3V
3C

H
A

3
3V

3C
H

B
3

12
V

5V
3V

3

1 2

P
11

H
ea

de
r

2

1 2

P
12

H
ea

de
r

2

P
W

M
+

1
P

W
M

-1

P
W

M
-2

P
W

M
+

2

G
N

D
3V

3

Figure A.4: Motor driver board schematic.

104

Appendix B

Chapter 4 Supplement

This appendix lists a few key scripts used for ARES. All scripts developed can be found at https:
//github.com/dyerbm/OmniWheel.

B.1 Sliding Mode Controller - Teensy Code

1 #include <Wire.h>

2 #include <Adafruit_PWMServoDriver.h>

3 #include <CircularBuffer.h>

4
5 #define MAX_PWM_FREQ 1600

6 #define FULL_ON_VAL 4096

7
8 Adafruit_PWMServoDriver pwm1 = Adafruit_PWMServoDriver(0x40);

9
10 char* output_string;

11
12 const int interruptPin_a_MSB = 3;

13 const int interruptPin_a_LSB = 2;

14 const int interruptPin_b_MSB = 7;

15 const int interruptPin_b_LSB = 6;

16 const int interruptPin_c_MSB = 5;

17 const int interruptPin_c_LSB = 4;

105

https://github.com/dyerbm/OmniWheel
https://github.com/dyerbm/OmniWheel

18
19 const int motor_a_p = 9;

20 const int motor_a_n = 8;

21 const int motor_b_p = 13;

22 const int motor_b_n = 14;

23 const int motor_c_p = 3;

24 const int motor_c_n = 2;

25
26 String echoString;

27
28 volatile double tics[3] = {0, 0, 0};

29 volatile double velocity[3] = {0, 0, 0};

30 char velocity_output[17];

31
32 int encoder_state[3];

33 int encoder_state_prev[3];

34
35 int incomingByte;

36
37 //Variables for the feedback lienarization controller

38 double v_r[3]={0, 0, 0}; //Linearized controller

39 double u_r[3]={0, 0, 0}; //Non-linear controller

40 double x_r[3]={0, 0, 0}; //Position of the robot

41 double x_r_desired[3]={0, 0, 0}; //desired position of robot

42 double xd_r_desired[3]={0,0,0}; //desired velocity of robot

43 const double wr=0.0508;//define wheel radius

44 const double rr=0.2632456;//define robot radius

45
46 const double lambda[3]={7,7,6}; //SMC lambda

47 const double K_r[3]={0.01,0.01,0.01}; //SMC K

48 double s[3] = {0,0,0}; //define sliding surface

49 double vshat[3] = {0,0,0}; //define measured slip

50
51 const int eint_r_length=100;

106

52 CircularBuffer<double,eint_r_length> e_r_x; //defines robot x

error

53 double eint_r_x=0; //define integral error

54 double ed_r_x; //define derivative error

55 CircularBuffer<double,eint_r_length> e_r_y; //defines robot x

error

56 double eint_r_y=0; //define integral error

57 double ed_r_y; //define derivative error

58 CircularBuffer<double,eint_r_length> e_r_t; //defines robot x

error

59 double eint_r_t=0; //define integral error

60 double ed_r_t; //define derivative error

61
62 //Variables for the motor controller

63 const float T=20.0; //Desired time step in milliseconds

64 double omega_desired[3] = {0,0,0};

65 double u_m[3] = {0,0,0};

66
67 const double K_p = -10;

68 const double K_d = -0;

69 const double K_i = -30;

70
71 float time_m=0; //Current time (for the motors)

72 float time_previous_m=0; //Last time step for the motors

73
74 const int eint_m_length=100; //set bufer size based on desired

integral loop

75 CircularBuffer<double,eint_m_length> e_m_a; //Initialize buffer

76 double eint_m_a=0;

77 double ed_m_a=0;

78 CircularBuffer<double,100> e_m_b;

79 double eint_m_b=0;

80 double ed_m_b=0;

81 CircularBuffer<double,100> e_m_c;

107

82 double eint_m_c=0;

83 double ed_m_c=0;

84
85
86 void setup() {

87 Serial1.begin(9600);

88 Serial.begin(115200); //Begin serial for XBee module

89 delay(3000);

90
91 pwm1.begin();

92 pwm1.setPWMFreq(MAX_PWM_FREQ);

93
94 //Initialize interupt pins for encoders

95 pinMode(interruptPin_a_MSB, INPUT);

96 pinMode(interruptPin_a_LSB, INPUT);

97 attachInterrupt(digitalPinToInterrupt(interruptPin_a_MSB),

ENCODER_A, CHANGE);

98 attachInterrupt(digitalPinToInterrupt(interruptPin_a_LSB),

ENCODER_A, CHANGE);

99 pinMode(interruptPin_b_MSB, INPUT);

100 pinMode(interruptPin_b_LSB, INPUT);

101 attachInterrupt(digitalPinToInterrupt(interruptPin_b_MSB),

ENCODER_B, CHANGE);

102 attachInterrupt(digitalPinToInterrupt(interruptPin_b_LSB),

ENCODER_B, CHANGE);

103 pinMode(interruptPin_c_MSB, INPUT);

104 pinMode(interruptPin_c_LSB, INPUT);

105 attachInterrupt(digitalPinToInterrupt(interruptPin_c_MSB),

ENCODER_C, CHANGE);

106 attachInterrupt(digitalPinToInterrupt(interruptPin_c_LSB),

ENCODER_C, CHANGE);

107
108 //set all motors to not move

109 pwm1.setPWM(motor_a_p, 0, FULL_ON_VAL);

108

110 pwm1.setPWM(motor_a_n, 0, FULL_ON_VAL);

111 pwm1.setPWM(motor_b_p, 0, FULL_ON_VAL);

112 pwm1.setPWM(motor_b_n, 0, FULL_ON_VAL);

113 pwm1.setPWM(motor_c_p, 0, FULL_ON_VAL);

114 pwm1.setPWM(motor_c_n, 0, FULL_ON_VAL);

115 delay(1000);

116
117 for (int i=0;i<=eint_m_length;i++){

118 e_m_a.unshift(0);

119 e_m_b.unshift(0);

120 e_m_c.unshift(0);

121 e_r_x.unshift(0);

122 e_r_y.unshift(0);

123 e_r_t.unshift(0);

124 }

125
126 delay(1000); //make sure motors stop turning so the robot

starts at origin

127 }

128
129 int start_time = millis();

130 String cString;

131 int ind1,ind2,ind3,ind4,ind5,ind6;

132
133 void loop() {

134 time_m=millis();

135
136 if (Serial1.available()>0) {

137 // digitalWrite(ledPin, HIGH); //indicate serial is being read

138 char c = Serial1.read();

139
140 if (c==’*’){

141 //Serial.println(cString);

142 ind1 = cString.indexOf(’,’); //finds location of first ’,’

109

143 x_r_desired[0] = cString.substring(0, ind1).toFloat(); //

captures first data String

144 ind2 = cString.indexOf(’,’, ind1+1); //finds location of

second ’,’

145 x_r_desired[1] = cString.substring(ind1 + 1,ind2).toFloat()

; //captures second data String

146 ind3 = cString.indexOf(’,’, ind2 +1); //finds location of

third ’,’

147 x_r_desired[2] = cString.substring(ind2+1,ind3).toFloat();

//captures third data String

148
149 cString="";

150 }

151
152 else {

153 cString += c; //makes the string controlString

154 }

155 }

156
157 // Main control loop, should be changed to run on a watchdog

interupt

158 if (time_m-time_previous_m>=T) {

159
160 CALC_VELOCITY(time_m-time_previous_m); //calculate each wheel

velocity

161
162 //-----------Calculate Sliding Mode Control--------------//

163 //Calculate current position

164
165 x_r[0] = x_r[0] + ((2.0/3.0*sin(x_r[2]))*velocity[0]+(cos(x_r

[2])/sqrt(3.0)-sin(x_r[2])/3.0)*velocity[1]+(-cos(x_r[2])/

sqrt(3.0)-sin(x_r[2])/3.0)*velocity[2])*(time_m-

time_previous_m)/1000.0*wr*1.0196; //calculate new

position, use scaling factor

110

166 x_r[1] = x_r[1] + ((-2.0/3.0*cos(x_r[2]))*velocity[0]+(sin(

x_r[2])/sqrt(3.0)+cos(x_r[2])/3.0)*velocity[1]+(-sin(x_r

[2])/sqrt(3.0)+cos(x_r[2])/3.0)*velocity[2])*(time_m-

time_previous_m)/1000.0*wr*1.0254; //calculate new

position, use scaling factor

167 x_r[2] = x_r[2] + (-1./(3.*rr)*(velocity[0]+velocity[1]+

velocity[2]))*(time_m-time_previous_m)/1000.*wr*1.0023; //

calculate new position, use scaling factor

168
169 e_r_x.unshift(x_r[0]-x_r_desired[0]);//calculate new error

170 e_r_y.unshift(x_r[1]-x_r_desired[1]);

171 e_r_t.unshift(x_r[2]-x_r_desired[2]);

172 eint_r_x = eint_r_x+(e_r_x[0]-e_r_x[eint_r_length-1])*(T

/1000.0)/(double)eint_r_length;//recalculate integral

error

173 eint_r_y = eint_r_y+(e_r_y[0]-e_r_y[eint_r_length-1])*(T

/1000.0)/(double)eint_r_length;

174 eint_r_t = eint_r_t+(e_r_t[0]-e_r_t[eint_r_length-1])*(T

/1000.0)/(double)eint_r_length;

175 ed_r_x = (e_r_x[0]-e_r_x[1])/(T/1000.0); //recalculate

derivative error

176 ed_r_y = (e_r_y[0]-e_r_y[1])/(T/1000.0);

177 ed_r_t = (e_r_t[0]-e_r_t[1])/(T/1000.0);

178
179 //PUT UR CONTROLLER HERE!

180
181 s[0]=e_r_x[0]+lambda[0]*eint_r_x; //calculate sliding surface

182 s[1]=e_r_y[0]+lambda[1]*eint_r_y;

183 s[2]=e_r_t[0]+lambda[2]*eint_r_t;

184
185 omega_desired[0]=1/wr*(sin(x_r[2])*(-lambda[0]*e_r_x[0]+

xd_r_desired[0]-K_r[0]*sgn(s[0]))-cos(x_r[2])*(-lambda[1]*

e_r_y[0]+xd_r_desired[1]-K_r[1]*sgn(s[1]))-rr*(-lambda[2]*

e_r_t[0]+xd_r_desired[2]-K_r[2]*sgn(s[2])))-vshat[0];

111

186 omega_desired[1]=1/wr*((sqrt(3.)/2.*cos(x_r[2])-sin(x_r[2])

/2.)*(-lambda[0]*e_r_x[0]+xd_r_desired[0]-K_r[0]*sgn(s[0])

)+(sqrt(3.)/2.*sin(x_r[2])+cos(x_r[2])/2.)*(-lambda[1]*

e_r_y[0]+xd_r_desired[1]-K_r[1]*sgn(s[1]))-rr*(-lambda[2]*

e_r_t[0]+xd_r_desired[2]-K_r[2]*sgn(s[2])))-vshat[1];

187 omega_desired[2]=1/wr*((-sqrt(3.)/2.*cos(x_r[2])-sin(x_r[2])

/2.)*(-lambda[0]*e_r_x[0]+xd_r_desired[0]-K_r[0]*sgn(s[0])

)+(-sqrt(3.)/2.*sin(x_r[2])+cos(x_r[2])/2.)*(-lambda[1]*

e_r_y[0]+xd_r_desired[1]-K_r[1]*sgn(s[1]))-rr*(-lambda[2]*

e_r_t[0]+xd_r_desired[2]-K_r[2]*sgn(s[2])))-vshat[2];

188
189
190 if (abs(omega_desired[0])>4 || abs(omega_desired[1])>4 || abs

(omega_desired[2])>4) {

191 float quickcounter = omega_desired[0];

192 for (int i=1; i<3;i++){

193 if (abs(quickcounter)<abs(omega_desired[i])) (

quickcounter=omega_desired[i]);

194 }

195 omega_desired[0]=omega_desired[0]/abs(quickcounter)*4;

196 omega_desired[1]=omega_desired[1]/abs(quickcounter)*4;

197 omega_desired[2]=omega_desired[2]/abs(quickcounter)*4;

198 }

199
200 //Calculate Motor Controllers

201 e_m_a.unshift(velocity[0]-omega_desired[0]);

202 eint_m_a = eint_m_a+(e_m_a[0]-e_m_a[eint_m_length-1])*(T

/1000)/eint_m_length;

203 ed_m_a = (e_m_a[0]-e_m_a[1])/(T/1000);

204 u_m[0] = K_p*e_m_a[0]+K_d*ed_m_a+K_i*eint_m_a; //calculate

the controller in PWM

205
206 e_m_b.unshift(velocity[1]-omega_desired[1]);

112

207 eint_m_b = eint_m_b+(e_m_b[0]-e_m_b[eint_m_length-1])*(T

/1000)/eint_m_length;

208 ed_m_b = (e_m_b[0]-e_m_b[1])/(T/1000);

209 u_m[1] = K_p*e_m_b[0]+K_d*ed_m_b+K_i*eint_m_b; //calculate

the controller in PWM

210
211 e_m_c.unshift(velocity[2]-omega_desired[2]);

212 eint_m_c = eint_m_c+(e_m_c[0]-e_m_c[eint_m_length-1])*(T

/1000)/eint_m_length;

213 ed_m_c = (e_m_c[0]-e_m_c[1])/(T/1000);

214 u_m[2] = K_p*e_m_c[0]+K_d*ed_m_a+K_i*eint_m_a; //calculate

the controller in PWM

215
216 if (abs(u_m[0])>12 || abs(u_m[1])>12 || abs(u_m[2])>12) {

217 float quickcounter = u_m[0];

218 for (int i=1; i<3;i++){

219 if (abs(quickcounter)<abs(u_m[i])) (quickcounter=u_m[i]);

220 }

221 u_m[0]=u_m[0]/abs(quickcounter)*12;

222 u_m[1]=u_m[1]/abs(quickcounter)*12;

223 u_m[2]=u_m[2]/abs(quickcounter)*12;

224 //Serial.println(millis());

225 }

226
227 //u_m[0]=8;u_m[1]=-4;u_m[2]=-4; //This forces a spinning

controller

228
229 //-----Set each motor accordingly-----//

230 if (abs(e_r_x[0])>0.002 || abs(e_r_y[0])>0.002 || abs(e_r_t

[0])>0.05){ //Make sure the robot doesn’t move if it’s

within 2 mm and 5 degrees

231 if (u_m[0]>0) {

232 pwm1.setPWM(motor_a_n, 0, (int) (abs(u_m[0])/12*4096));

233 pwm1.setPWM(motor_a_p, 0, 0);

113

234 }

235 else {

236 pwm1.setPWM(motor_a_n, 0, 0);

237 pwm1.setPWM(motor_a_p, 0, (int) (abs(u_m[0])/12*4096));

238 }

239 if (u_m[1]>0) {

240 pwm1.setPWM(motor_b_n, 0, (int) (abs(u_m[1])/12*4096));

241 pwm1.setPWM(motor_b_p, 0, 0);

242 }

243 else {

244 pwm1.setPWM(motor_b_n, 0, 0);

245 pwm1.setPWM(motor_b_p, 0, (int) (abs(u_m[1])/12*4096));

246 }

247 if (u_m[2]>0) {

248 pwm1.setPWM(motor_c_n, 0, (int) (abs(u_m[2])/12*4096));

249 pwm1.setPWM(motor_c_p, 0, 0);

250 }

251 else {

252 pwm1.setPWM(motor_c_n, 0, 0);

253 pwm1.setPWM(motor_c_p, 0, (int) (abs(u_m[2])/12*4096));

254 }

255 }

256 else { //if robot is close enough, stop moving the motors (

will help stop the noise)

257 pwm1.setPWM(motor_a_n, 0, 0);

258 pwm1.setPWM(motor_a_p, 0, 0);

259 pwm1.setPWM(motor_b_n, 0, 0);

260 pwm1.setPWM(motor_b_p, 0, 0);

261 pwm1.setPWM(motor_c_n, 0, 0);

262 pwm1.setPWM(motor_c_p, 0, 0);

263 }

264
265
266 time_previous_m=time_m; //set previous time to current time

114

267
268
269 }

270 }

271
272 static inline double sgn(double val) {

273 if (val < 0) return -1.;

274 if (val==0) return 0.;

275 return 1.;

276 }

277
278 // These encoder functions were origionally written by Trevor

Smith (minor changes made)

279 // Encoder A

280 void ENCODER_A() {

281 noInterrupts();

282 UPDATE_STATES_A(); //updates encoder values

283 if (encoder_state[0] != encoder_state_prev[0]) { //update tics

if change detected

284 if (encoder_state[0]==3&&encoder_state_prev[0]==1 ||

encoder_state[0]==2&&encoder_state_prev[0]==3 ||

encoder_state[0]==0&&encoder_state_prev[0]==2 ||

encoder_state[0]==1&&encoder_state_prev[0]==0) {

285 tics[0] = tics[0] + 1;

286 } else {

287 tics[0] = tics[0] - 1;

288 }

289 }

290 interrupts();

291 }

292
293 void UPDATE_STATES_A() {

294 encoder_state_prev[0] = encoder_state[0]; // Update previous

int

115

295 encoder_state[0] = digitalRead(interruptPin_a_MSB) * 2 +

digitalRead(interruptPin_a_LSB);

296 }

297
298 // Encoder B

299 void ENCODER_B() {

300 noInterrupts();

301 UPDATE_STATES_B(); //updates encoder values

302 if (encoder_state[1] != encoder_state_prev[1]) { //update tics

if change detected

303 if (encoder_state[1]==3&&encoder_state_prev[1]==1 ||

encoder_state[1]==2&&encoder_state_prev[1]==3 ||

encoder_state[1]==0&&encoder_state_prev[1]==2 ||

encoder_state[1]==1&&encoder_state_prev[1]==0) {

304 tics[1] = tics[1] + 1;

305 } else {

306 tics[1] = tics[1] - 1;

307 }

308 }

309 interrupts();

310 }

311
312 void UPDATE_STATES_B() {

313 encoder_state_prev[1] = encoder_state[1]; // Update previous

int

314 encoder_state[1] = digitalRead(interruptPin_b_MSB) * 2 +

digitalRead(interruptPin_b_LSB);

315 }

316
317 // Encoder C

318 void ENCODER_C() {

319 noInterrupts();

320 UPDATE_STATES_C(); //updates encoder values

116

321 if (encoder_state[2] != encoder_state_prev[2]) { //update tics

if change detected

322 if (encoder_state[2]==3&&encoder_state_prev[2]==1 ||

encoder_state[2]==2&&encoder_state_prev[2]==3 ||

encoder_state[2]==0&&encoder_state_prev[2]==2 ||

encoder_state[2]==1&&encoder_state_prev[2]==0) {

323 tics[2] = tics[2] + 1;

324 } else {

325 tics[2] = tics[2] - 1;

326 }

327 }

328 interrupts();

329 }

330
331 void UPDATE_STATES_C() {

332 encoder_state_prev[2] = encoder_state[2]; // Update previous

int

333 encoder_state[2] = digitalRead(interruptPin_c_MSB) * 2 +

digitalRead(interruptPin_c_LSB);

334 }

335
336 void CALC_VELOCITY(float timestep) {

337 noInterrupts();

338 velocity[0] = tics[0] / ((timestep)/1000) / 10000*2*3.14156; //

give time in tics per time period

339 velocity[1] = tics[1] / ((timestep)/1000) / 10000*2*3.14156;

340 velocity[2] = tics[2] / ((timestep)/1000) / 10000*2*3.14156;

341 tics[0] = 0;

342 tics[1] = 0;

343 tics[2] = 0;

344 interrupts();

345 }

117

B.2 Feedback Linearization Controller - Teensy Code

1 #include <Wire.h>

2 #include <Adafruit_PWMServoDriver.h>

3 #include <CircularBuffer.h>

4
5 #define MAX_PWM_FREQ 1600

6 #define FULL_ON_VAL 4096

7
8 Adafruit_PWMServoDriver pwm1 = Adafruit_PWMServoDriver(0x40);

9
10 char* output_string;

11
12 const int interruptPin_a_MSB = 3;

13 const int interruptPin_a_LSB = 2;

14 const int interruptPin_b_MSB = 7;

15 const int interruptPin_b_LSB = 6;

16 const int interruptPin_c_MSB = 5;

17 const int interruptPin_c_LSB = 4;

18
19 const int motor_a_p = 9;

20 const int motor_a_n = 8;

21 const int motor_b_p = 13;

22 const int motor_b_n = 14;

23 const int motor_c_p = 3;

24 const int motor_c_n = 2;

25
26 String echoString;

27
28 volatile double tics[3] = {0, 0, 0};

29 volatile double velocity[3] = {0, 0, 0};

30 char velocity_output[17];

31

118

32 int encoder_state[3];

33 int encoder_state_prev[3];

34
35 int incomingByte;

36
37 //Variables for the feedback lienarization controller

38 double v_r[3]={0, 0, 0}; //Linearized controller

39 double u_r[3]={0, 0, 0}; //Non-linear controller

40 double x_r[3]={0,0,0}; //Position of the robot

41 double x_r_desired[3]={0,0,0}; //desired position of robot

42 const double wr=0.0508;//define wheel radius

43 const double rr=0.2632456;//define robot radius

44
45 const double K_p_r[3]={-20,-20,-6}; //proportional gains

46 const double K_d_r[3]={0,0,0}; //derivative gain

47 const double K_i_r[3]={-50,-50,-30}; //integral gain (in sim was

-2000)

48
49 const int eint_r_length=100;

50 CircularBuffer<double,eint_r_length> e_r_x; //defines robot x

error

51 double eint_r_x=0; //define integral error

52 double ed_r_x; //define derivative error

53 CircularBuffer<double,eint_r_length> e_r_y; //defines robot x

error

54 double eint_r_y=0; //define integral error

55 double ed_r_y; //define derivative error

56 CircularBuffer<double,eint_r_length> e_r_t; //defines robot x

error

57 double eint_r_t=0; //define integral error

58 double ed_r_t; //define derivative error

59
60 //Variables for the motor controller

61 const float T=20.0; //Desired time step in milliseconds

119

62 double omega_desired[3] = {0,0,0};

63 double u_m[3] = {0,0,0};

64
65 const double K_p = -10;

66 const double K_d = -0;

67 const double K_i = -30;

68
69 float time_m=0; //Current time (for the motors)

70 float time_previous_m=0; //Last time step for the motors

71
72 const int eint_m_length=100; //set bufer size based on desired

integral loop

73 CircularBuffer<double,eint_m_length> e_m_a; //Initialize buffer

74 double eint_m_a=0;

75 double ed_m_a=0;

76 CircularBuffer<double,100> e_m_b;

77 double eint_m_b=0;

78 double ed_m_b=0;

79 CircularBuffer<double,100> e_m_c;

80 double eint_m_c=0;

81 double ed_m_c=0;

82
83
84 void setup() {

85 Serial.begin(115200);

86 Serial1.begin(9600);

87 delay(3000);

88
89 pwm1.begin();

90 pwm1.setPWMFreq(MAX_PWM_FREQ);

91
92 //Initialize interupt pins for encoders

93 pinMode(interruptPin_a_MSB, INPUT);

94 pinMode(interruptPin_a_LSB, INPUT);

120

95 attachInterrupt(digitalPinToInterrupt(interruptPin_a_MSB),

ENCODER_A, CHANGE);

96 attachInterrupt(digitalPinToInterrupt(interruptPin_a_LSB),

ENCODER_A, CHANGE);

97 pinMode(interruptPin_b_MSB, INPUT);

98 pinMode(interruptPin_b_LSB, INPUT);

99 attachInterrupt(digitalPinToInterrupt(interruptPin_b_MSB),

ENCODER_B, CHANGE);

100 attachInterrupt(digitalPinToInterrupt(interruptPin_b_LSB),

ENCODER_B, CHANGE);

101 pinMode(interruptPin_c_MSB, INPUT);

102 pinMode(interruptPin_c_LSB, INPUT);

103 attachInterrupt(digitalPinToInterrupt(interruptPin_c_MSB),

ENCODER_C, CHANGE);

104 attachInterrupt(digitalPinToInterrupt(interruptPin_c_LSB),

ENCODER_C, CHANGE);

105
106 //set all motors to not move

107 pwm1.setPWM(motor_a_p, 0, FULL_ON_VAL);

108 pwm1.setPWM(motor_a_n, 0, FULL_ON_VAL);

109 pwm1.setPWM(motor_b_p, 0, FULL_ON_VAL);

110 pwm1.setPWM(motor_b_n, 0, FULL_ON_VAL);

111 pwm1.setPWM(motor_c_p, 0, FULL_ON_VAL);

112 pwm1.setPWM(motor_c_n, 0, FULL_ON_VAL);

113 delay(1000);

114
115 for (int i=0;i<=eint_m_length;i++){

116 e_m_a.unshift(0);

117 e_m_b.unshift(0);

118 e_m_c.unshift(0);

119 e_r_x.unshift(0);

120 e_r_y.unshift(0);

121 e_r_t.unshift(0);

122 }

121

123
124 delay(1000); //make sure motors stop turning so the robot

starts at origin

125 }

126
127 int start_time = millis();

128 String cString;

129 int ind1,ind2,ind3;

130
131 void loop() {

132 time_m=millis();

133
134 if (Serial1.available()>0) {

135 // digitalWrite(ledPin, HIGH); //indicate serial is being read

136 char c = Serial1.read();

137
138 if (c==’*’){

139 Serial.println(cString);

140 ind1 = cString.indexOf(’,’); //finds location of first ’,’

141 x_r_desired[0] = cString.substring(0, ind1).toFloat(); //

captures first data String

142 ind2 = cString.indexOf(’,’, ind1+1); //finds location of

second ’,’

143 x_r_desired[1] = cString.substring(ind1 + 1,ind2).toFloat()

; //captures second data String

144 ind3 = cString.indexOf(’,’, ind2 +1); //finds location of

second ’,’

145 x_r_desired[2] = cString.substring(ind2+1,ind3).toFloat();

//captures third data String

146
147
148 cString="";

149 }

150

122

151 else {

152 cString += c; //makes the string controlString

153 }

154 }

155 // digitalWrite(ledPin, LOW);

156
157 if (time_m-time_previous_m>=T) {

158
159
160 CALC_VELOCITY(time_m-time_previous_m); //calculate each wheel

velocity

161
162
163 //-----------Calculate Feedback linearization--------------//

164 //Calculate current position

165
166
167 x_r[0] = x_r[0] + ((2.0/3.0*sin(x_r[2]))*velocity[0]+(cos(x_r

[2])/sqrt(3.0)-sin(x_r[2])/3.0)*velocity[1]+(-cos(x_r[2])/

sqrt(3.0)-sin(x_r[2])/3.0)*velocity[2])*(time_m-

time_previous_m)/1000.0*wr*1.0196; //calculate new

position, use scaling factor

168 x_r[1] = x_r[1] + ((-2.0/3.0*cos(x_r[2]))*velocity[0]+(sin(

x_r[2])/sqrt(3.0)+cos(x_r[2])/3.0)*velocity[1]+(-sin(x_r

[2])/sqrt(3.0)+cos(x_r[2])/3.0)*velocity[2])*(time_m-

time_previous_m)/1000.0*wr*1.0254; //calculate new

position, use scaling factor

169 x_r[2] = x_r[2] + (-1./(3.*rr)*(velocity[0]+velocity[1]+

velocity[2]))*(time_m-time_previous_m)/1000.*wr*1.0023; //

calculate new position, use scaling factor

170
171 e_r_x.unshift(x_r[0]-x_r_desired[0]);//calculate new error

172 e_r_y.unshift(x_r[1]-x_r_desired[1]);

173 e_r_t.unshift(x_r[2]-x_r_desired[2]);

123

174 eint_r_x = eint_r_x+(e_r_x[0]-e_r_x[eint_r_length-1])*(T

/1000.0)/(double)eint_r_length;//recalculate integral

error

175 eint_r_y = eint_r_y+(e_r_y[0]-e_r_y[eint_r_length-1])*(T

/1000.0)/(double)eint_r_length;

176 eint_r_t = eint_r_t+(e_r_t[0]-e_r_t[eint_r_length-1])*(T

/1000.0)/(double)eint_r_length;

177 ed_r_x = (e_r_x[0]-e_r_x[1])/(T/1000.0); //recalculate

derivative error

178 ed_r_y = (e_r_y[0]-e_r_y[1])/(T/1000.0);

179 ed_r_t = (e_r_t[0]-e_r_t[1])/(T/1000.0);

180
181 v_r[0]= K_p_r[0]*e_r_x[0]+K_d_r[0]*ed_r_x+K_i_r[0]*eint_r_x;

//calculate linear controller

182 v_r[1]= K_p_r[1]*e_r_y[0]+K_d_r[1]*ed_r_y+K_i_r[1]*eint_r_y;

183 v_r[2]= K_p_r[2]*e_r_t[0]+K_d_r[2]*ed_r_t+K_i_r[2]*eint_r_t;

184
185 omega_desired[0] = (sin(x_r[2])*v_r[0]-cos(x_r[2])*v_r[1]-rr*

v_r[2])*(time_m-time_previous_m)*wr; //x position

186 omega_desired[1] = ((sqrt(3)/2*cos(x_r[2])-sin(x_r[2])/2)*v_r

[0]+(sqrt(3)/2*sin(x_r[2])+cos(x_r[2])/2)*v_r[1]+(-rr)*v_r

[2])*(time_m-time_previous_m)*wr;

187 omega_desired[2] = ((-sqrt(3)/2*cos(x_r[2])-sin(x_r[2])/2)*

v_r[0]+(-sqrt(3)/2*sin(x_r[2])+cos(x_r[2])/2)*v_r[1]+(-rr)

v_r[2])(time_m-time_previous_m)*wr;

188
189 if (abs(omega_desired[0])>4 || abs(omega_desired[1])>4 || abs

(omega_desired[2])>4) {

190 float quickcounter = omega_desired[0];

191 for (int i=1; i<3;i++){

192 if (abs(quickcounter)<abs(omega_desired[i])) (

quickcounter=omega_desired[i]);

193 }

194 omega_desired[0]=omega_desired[0]/abs(quickcounter)*4;

124

195 omega_desired[1]=omega_desired[1]/abs(quickcounter)*4;

196 omega_desired[2]=omega_desired[2]/abs(quickcounter)*4;

197 }

198
199 //Calculate Motor Controllers

200 e_m_a.unshift(velocity[0]-omega_desired[0]);

201 eint_m_a = eint_m_a+(e_m_a[0]-e_m_a[eint_m_length-1])*(T

/1000)/eint_m_length;

202 ed_m_a = (e_m_a[0]-e_m_a[1])/(T/1000);

203 u_m[0] = K_p*e_m_a[0]+K_d*ed_m_a+K_i*eint_m_a; //calculate

the controller in PWM

204
205 e_m_b.unshift(velocity[1]-omega_desired[1]);

206 eint_m_b = eint_m_b+(e_m_b[0]-e_m_b[eint_m_length-1])*(T

/1000)/eint_m_length;

207 ed_m_b = (e_m_b[0]-e_m_b[1])/(T/1000);

208 u_m[1] = K_p*e_m_b[0]+K_d*ed_m_b+K_i*eint_m_b; //calculate

the controller in PWM

209
210 e_m_c.unshift(velocity[2]-omega_desired[2]);

211 eint_m_c = eint_m_c+(e_m_c[0]-e_m_c[eint_m_length-1])*(T

/1000)/eint_m_length;

212 ed_m_c = (e_m_c[0]-e_m_c[1])/(T/1000);

213 u_m[2] = K_p*e_m_c[0]+K_d*ed_m_a+K_i*eint_m_a; //calculate

the controller in PWM

214
215 if (abs(u_m[0])>12 || abs(u_m[1])>12 || abs(u_m[2])>12) {

216 float quickcounter = u_m[0];

217 for (int i=1; i<3;i++){

218 if (abs(quickcounter)<abs(u_m[i])) (quickcounter=u_m[i]);

219 }

220 u_m[0]=u_m[0]/abs(quickcounter)*12;

221 u_m[1]=u_m[1]/abs(quickcounter)*12;

222 u_m[2]=u_m[2]/abs(quickcounter)*12;

125

223 //Serial.println(millis());

224 }

225
226 //u_m[0]=8;u_m[1]=-4;u_m[2]=-4; //This forces a spinning

controller

227
228 //-----Set each motor accordingly-----//

229 if (u_m[0]>0) {

230 pwm1.setPWM(motor_a_n, 0, (int) (abs(u_m[0])/12*4096));

231 pwm1.setPWM(motor_a_p, 0, 0);

232 }

233 else {

234 pwm1.setPWM(motor_a_n, 0, 0);

235 pwm1.setPWM(motor_a_p, 0, (int) (abs(u_m[0])/12*4096));

236 }

237 if (u_m[1]>0) {

238 pwm1.setPWM(motor_b_n, 0, (int) (abs(u_m[1])/12*4096));

239 pwm1.setPWM(motor_b_p, 0, 0);

240 }

241 else {

242 pwm1.setPWM(motor_b_n, 0, 0);

243 pwm1.setPWM(motor_b_p, 0, (int) (abs(u_m[1])/12*4096));

244 }

245 if (u_m[2]>0) {

246 pwm1.setPWM(motor_c_n, 0, (int) (abs(u_m[2])/12*4096));

247 pwm1.setPWM(motor_c_p, 0, 0);

248 }

249 else {

250 pwm1.setPWM(motor_c_n, 0, 0);

251 pwm1.setPWM(motor_c_p, 0, (int) (abs(u_m[2])/12*4096));

252 }

253
254
255 time_previous_m=time_m; //set previous time to current time

126

256
257
258 //sprintf(output_string, "Error: %f\tController: %d",e_m_a

[0],u_m[0]); //Send out error string (leave commented

unless you have the bandwidth)

259 //Serial.println(output_string);

260 Serial.print(x_r[0],5);

261 Serial.print(",");

262 Serial.print(x_r[1],5);

263 Serial.print(",");

264 Serial.print(x_r[2],5);

265 Serial.print("\n");

266 }

267
268 }

269
270 // Encoder A

271 void ENCODER_A() {

272 noInterrupts();

273 UPDATE_STATES_A(); //updates encoder values

274 if (encoder_state[0] != encoder_state_prev[0]) { //update tics

if change detected

275 if (encoder_state[0]==3&&encoder_state_prev[0]==1 ||

encoder_state[0]==2&&encoder_state_prev[0]==3 ||

encoder_state[0]==0&&encoder_state_prev[0]==2 ||

encoder_state[0]==1&&encoder_state_prev[0]==0) {

276 tics[0] = tics[0] + 1;

277 } else {

278 tics[0] = tics[0] - 1;

279 }

280 }

281 interrupts();

282 }

283

127

284 void UPDATE_STATES_A() {

285 encoder_state_prev[0] = encoder_state[0]; // Update previous

int

286 encoder_state[0] = digitalRead(interruptPin_a_MSB) * 2 +

digitalRead(interruptPin_a_LSB);

287 }

288
289 // Encoder B

290 void ENCODER_B() {

291 noInterrupts();

292 UPDATE_STATES_B(); //updates encoder values

293 if (encoder_state[1] != encoder_state_prev[1]) { //update tics

if change detected

294 if (encoder_state[1]==3&&encoder_state_prev[1]==1 ||

encoder_state[1]==2&&encoder_state_prev[1]==3 ||

encoder_state[1]==0&&encoder_state_prev[1]==2 ||

encoder_state[1]==1&&encoder_state_prev[1]==0) {

295 tics[1] = tics[1] + 1;

296 } else {

297 tics[1] = tics[1] - 1;

298 }

299 }

300 interrupts();

301 }

302
303 void UPDATE_STATES_B() {

304 encoder_state_prev[1] = encoder_state[1]; // Update previous

int

305 encoder_state[1] = digitalRead(interruptPin_b_MSB) * 2 +

digitalRead(interruptPin_b_LSB);

306 }

307
308 // Encoder C

309 void ENCODER_C() {

128

310 noInterrupts();

311 UPDATE_STATES_C(); //updates encoder values

312 if (encoder_state[2] != encoder_state_prev[2]) { //update tics

if change detected

313 if (encoder_state[2]==3&&encoder_state_prev[2]==1 ||

encoder_state[2]==2&&encoder_state_prev[2]==3 ||

encoder_state[2]==0&&encoder_state_prev[2]==2 ||

encoder_state[2]==1&&encoder_state_prev[2]==0) {

314 tics[2] = tics[2] + 1;

315 } else {

316 tics[2] = tics[2] - 1;

317 }

318 }

319 interrupts();

320 }

321
322 void UPDATE_STATES_C() {

323 encoder_state_prev[2] = encoder_state[2]; // Update previous

int

324 encoder_state[2] = digitalRead(interruptPin_c_MSB) * 2 +

digitalRead(interruptPin_c_LSB);

325 }

326
327 void CALC_VELOCITY(float timestep) {

328 noInterrupts();

329 velocity[0] = tics[0] / ((timestep)/1000) / 10000*2*3.14156; //

give time in tics per time period

330 velocity[1] = tics[1] / ((timestep)/1000) / 10000*2*3.14156;

331 velocity[2] = tics[2] / ((timestep)/1000) / 10000*2*3.14156;

332 tics[0] = 0;

333 tics[1] = 0;

334 tics[2] = 0;

335 interrupts();

336 }

129

B.3 Vicon Data Collection - Matlab Code

1 % The majority of this code was provided by Amit Patel

2 % It has been modified to run a different robot at a different

3 % frequency for custom trajectories

4
5
6 timenow=0.02;

7 timeglobal=0;

8 tglobal=tic;

9 desired=[0,0,0];

10
11 marker_1_lost = false;

12 marker_2_lost = false;

13 marker_3_lost = false;

14 marker_4_lost = false;

15 marker_5_lost = false;

16 marker_6_lost = false;

17 marker_7_lost = false;

18 marker_8_lost = false;

19
20 matcounter = 1; % Starting row for output matrix

21 max_operation = 120; % Time to record (max time robot will move

if sending signal)

22 matrixsize = max_operation * 50 + 50; % Based on the time for

operation, will wait 1 second after robot stops to end

recording

23
24 Sheet1Mat = zeros(matrixsize,29);

25
26 % Below are the headings for the files commented, feel

27 %Raw_Headings = ['GlobalTime', 'Time', 'M1X', 'M1Y', 'M1Z', 'M2X

', 'M2Y', 'M2Z', 'M3X', 'M3Y', 'M3Z', 'M4X', 'M4Y', 'M4Z', '

130

M5X', 'M5Y', 'M5Z','M6X', 'M6Y', 'M6Z','M7X', 'M7Y', 'M7Z','

M8X', 'M8Y', 'M8Z'];

28
29 %% select serial port.

30 delete(instrfind);

31 port = 'COM7'; % Replace with whatever the USB serial bus from

the XBee module is on (was 7)

32 serialPortObj = serial(port, 'BaudRate', 9600);

33 fopen(serialPortObj);

34
35 %% Get name of notebook from user

36 prompt={'Please enter the name of the desired notebook'};

37 title='Excel notebook name';

38 notebook_name = inputdlg(prompt,title);

39 notebook_name_raw = strcat(notebook_name{1}, '_raw', '.xlsx');

40
41 %% CONNECT TO DATA STREAM

42 % Load the SDK

43 Client.LoadViconDataStreamSDK();

44 fprintf('Vicon Data Stream SDK loaded\n');

45
46 % Connect to a server

47 HostName = 'localhost:801';

48 MyClient = Client(); % Client obj

49 fprintf('Connecting to %s ...\n', HostName);

50 while ˜MyClient.IsConnected().Connected

51 MyClient.Connect(HostName);

52 end

53
54 % Enable some different data types

55 MyClient.EnableSegmentData();

56 MyClient.EnableMarkerData();

57
58 % Set the streaming mode

131

59 MyClient.SetStreamMode(StreamMode.ClientPull);

60
61 % Set the axis mapping

62 MyClient.SetAxisMapping(Direction.Forward, ...

63 Direction.Left, ...

64 Direction.Up); % Z-up

65
66 tempcount=0;

67 counter=0;

68 flag1=0;

69 DATACORRECTION=0;

70 data=[1000,1000];

71
72 rb1 = [0,0,0];

73 rb2 = [0,0,0];

74 rb3 = [0,0,0];

75 rb4 = [0,0,0];

76 rb5 = [0,0,0];

77 rb6 = [0,0,0];

78 rb7 = [0,0,0];

79 rb8 = [0,0,0];

80
81 %% GET DATA

82 tglobal=tic;

83 while(matcounter <= matrixsize)

84
85 % 1 - Get a frame

86 while MyClient.GetFrame().Result.Value ˜= Result.Success

87 end

88 timeglobal = toc(tglobal);

89
90 % Print the frame number

91 Output_GetFrameNumber = MyClient.GetFrameNumber();

92

132

93 marker_1_lost = false;

94 marker_2_lost = false;

95 marker_3_lost = false;

96 marker_4_lost = false;

97 marker_5_lost = false;

98 marker_6_lost = false;

99 marker_7_lost = false;

100 marker_8_lost = false;

101
102 % 2 - Get the subject

103 SubjectCount = MyClient.GetSubjectCount().SubjectCount;

104
105 for SubjectIndex = 1:SubjectCount

106 timer=tic;

107 SubjectName = MyClient.GetSubjectName(SubjectIndex).

SubjectName;

108
109 % 3 - get origin data

110 if strcmpi(SubjectName, 'origin')

111 % Get translation data of origin

112 MarkerCount = MyClient.GetMarkerCount(SubjectName).

MarkerCount;

113
114 for MarkerIndex = 1:MarkerCount

115 MarkerName = MyClient.GetMarkerName(SubjectName,

MarkerIndex).MarkerName;

116
117 if MarkerName ˜= ' ' % error check - it is

labelled

118 MarkerTranslation = MyClient.

GetMarkerGlobalTranslation(SubjectName,

MarkerName);

119
120 if strcmpi(MarkerName, 'origin')

133

121 origin = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation(2)

MarkerTranslation.Translation(3)];

122 end

123
124 end

125
126 end

127
128 end % end of get origin data

129
130 % 3 - get robot data

131 if strcmpi(SubjectName, '8MK_3WD_LOW')

132 % Get translation data of all 4 markers

133 MarkerCount = MyClient.GetMarkerCount(SubjectName).

MarkerCount;

134 % fprintf(' Markers (%d):\n', MarkerCount);

135 for MarkerIndex = 1:MarkerCount

136 MarkerName = MyClient.GetMarkerName(SubjectName,

MarkerIndex).MarkerName;

137
138 if MarkerName ˜= ' ' % error check - it is

labelled

139
140 MarkerTranslation = MyClient.

GetMarkerGlobalTranslation(SubjectName,

MarkerName);

141
142 if strcmpi(MarkerName, 'rb1')

143
144 %Added for filling missed frames

145 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

134

˜= 0

146 rb1 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

(2) MarkerTranslation.Translation

(3)];

147 marker_1_lost = false;

148 else

149 if matcounter > 3

150 marker_1_lost = true;

151 end

152 end

153
154 end

155 if strcmpi(MarkerName, 'rb2')

156
157 %Added for filling missed frames

158 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

˜= 0

159 rb2 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

(2) MarkerTranslation.Translation

(3)];

160 marker_2_lost = false;

161 else

162 if matcounter > 3

163 marker_2_lost = true;

164 end

165 end

166
167 end

168 if strcmpi(MarkerName, 'rb3')

169

135

170 %Added for filling missed frames

171 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

˜= 0

172 rb3 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

(2) MarkerTranslation.Translation

(3)];

173 marker_3_lost = false;

174 else

175 if matcounter > 3

176 marker_3_lost = true;

177 end

178 end

179
180 end

181 if strcmpi(MarkerName, 'rb4')

182
183 %Added for filling missed frames

184 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

˜= 0

185 rb4 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

(2) MarkerTranslation.Translation

(3)];

186 marker_4_lost = false;

187 else

188 if matcounter > 3

189 marker_4_lost = true;

190 end

191 end

136

192
193 end

194 if strcmpi(MarkerName, 'rb5')

195
196 %Added for filling missed frames

197 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

˜= 0

198 rb5 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

(2) MarkerTranslation.Translation

(3)];

199 marker_5_lost = false;

200 else

201 if matcounter > 3

202 marker_5_lost = true;

203 end

204 end

205
206 end

207 if strcmpi(MarkerName, 'rb6')

208
209 %Added for filling missed frames

210 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

˜= 0

211 rb6 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

(2) MarkerTranslation.Translation

(3)];

212 marker_6_lost = false;

213 else

137

214 if matcounter > 3

215 marker_6_lost = true;

216 end

217 end

218
219 end

220 if strcmpi(MarkerName, 'rb7')

221
222 %Added for filling missed frames

223 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

˜= 0

224 rb7 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

(2) MarkerTranslation.Translation

(3)];

225 marker_7_lost = false;

226 else

227 if matcounter > 3

228 marker_7_lost = true;

229 end

230 end

231
232 end

233 if strcmpi(MarkerName, 'rb8')

234
235 %Added for filling missed frames

236 if MarkerTranslation.Translation(1) ˜= 0

&& MarkerTranslation.Translation(2) ˜=

0 && MarkerTranslation.Translation(3)

˜= 0

237 rb8 = [MarkerTranslation.Translation

(1) MarkerTranslation.Translation

138

(2) MarkerTranslation.Translation

(3)];

238 marker_8_lost = false;

239 else

240 if matcounter > 3

241 marker_8_lost = true;

242 end

243 end

244
245 end

246
247 end % end of if for checking to make sure the

marker is valid

248
249 end % end of for loop for checking markers

250
251 end % end of robot segment

252
253 % At 100HZ, this value should be fixed at 10ms between

each

254 % iteration

255 timenow = 0.020;

256
257 %%%-------------set desired position

---------------------%%%

258 %fprintf(serialPortObj, '1,0,0*');

259
260 Period=60; %period in seconds

261 rose = 2; %determines number of pedals (2k pedals for

even k, k pedals for odd k)

262
263 %desired = [1,0,0];

264 %desired = [sin(2*pi*timeglobal/Period),cos(2*pi*

timeglobal/Period), 0]; %Circle (r=1m)

139

265 %desired = [cos(rose*2*pi*timeglobal/Period)*cos(2*pi*

timeglobal/Period), cos(rose*2*pi*timeglobal/Period)*

sin(2*pi*timeglobal/Period),0];

266
267 %desired = [0 0 2*pi*timeglobal/12.]; %pspin

268 %desired = [0 0 -2*pi*timeglobal/12.]; %nspin

269 desired = [0 0 sin(2*pi*timeglobal/24.)*0.9*pi]; %sin

270
271 fprintf(serialPortObj, strcat(num2str(desired(1)),",",

num2str(desired(2)),",",num2str(desired(3)),"*"));

272 desired

273
274 % Save Sheet1 Data

275 format long

276 Sheet1Mat(matcounter,:) = [timeglobal, timenow, rb1, rb2,

rb3, rb4, rb5, rb6, rb7, rb8, desired]; % Gives raw

data

277
278 matcounter = matcounter + 1;

279
280 end

281
282 end % end of while loop, everything before this runs until the

end of the script

283
284
285 desired = [0,0,0];

286 fprintf(serialPortObj, '0,0,0*');

287 %xlswrite("./Raw Data/test_r.xlsx", Sheet1Mat); %Save the data (

if this isn't working just copy data over to a spread sheet,

MATLAB is finicky in git repos)

288 xlswrite(notebook_name_raw, Sheet1Mat);

140

Appendix C

Chapter 7 Supplement

This appendix shows all figures of environmental statistics that were calculated, but not included
in the body of the thesis, as well as code used for data collection and analysis. All code can be
found in the Git repository at https://github.com/dyerbm/OmniWheel.

C.1 Covariances

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

uv
/ S

2

p1
p2
p3
p4
p5
p6
p7
p8

Figure C.1: Normalized covariance between x and y wind velocity components over a diurnal
cycle.

141

https://github.com/dyerbm/OmniWheel

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.2

0.0

0.2

0.4
uw

/ S
2

p1
p2
p3
p4
p5
p6
p7
p8

Figure C.2: Normalized covariance between x and z wind velocity components over a diurnal
cycle.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.0

0.2

0.4

0.6

vw
/ S

2

p1
p2
p3
p4
p5
p6
p7
p8

Figure C.3: Normalized covariance between y and z wind velocity components over a diurnal
cycle.

142

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.2

0.0

0.2

0.4

0.6

0.8
ut

/(S
T)

p1
p2
p3
p4
p5
p6
p7
p8

Figure C.4: Normalized covariance between the x wind velocity component and ultrasonic tem-
perature over a diurnal cycle.

16
-00

17
-00

18
-00

19
-00

20
-00

21
-00

22
-00

23
-00

00
-00

01
-00

02
-00

03
-00

04
-00

05
-00

06
-00

07
-00

08
-00

09
-00

10
-00

11
-00

12
-00

13
-00

14
-00

15
-00

Time [EDT]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

vt
/(S

T)

p1
p2
p3
p4
p5
p6
p7
p8

Figure C.5: Normalized covariance between the y wind velocity component and ultrasonic tem-
perature over a diurnal cycle.

143

C.2 Wiring Diagrams

Figure C.6: Wiring diagram of Young81000 ultrasonic anemometer, HMP60 temperature and rel-
ative humidity sensor, and CR6 data-logger.

C.3 Codes

C.3.1 Trajectory Stitch.py

i m p o r t numpy as np
i m p o r t pandas as pd

144

f i l e n a m e = ” o u t p u t . t x t ”

d f = pd . r e a d c s v (f i l e n a m e ,
d e l i m i t e r = ’\ t ’ ,
names = [’ x ’ , ’ y ’ , ’ t h e t a ’])

newframe = pd . DataFrame (columns = [’ x ’ , ’ y ’ , ’ t h e t a ’])

me asu reme n t t i me =160*50 # t ime t o sample m u l t i p l i e d by c o n t r o l l e r f r e q u e n c y

d i c t ={}
f o r pathnum i n r a n g e (1 , 9) :

p r i n t (pathnum)
f i l e n a m e = ” p a t h ”+ s t r (pathnum) +” . t x t ”
d f = pd . r e a d c s v (f i l e n a m e ,

d e l i m i t e r = ’\ t ’ ,
names = [’ x ’ , ’ y ’ , ’ t h e t a ’])

f o r i i n r a n g e (l e n (d f) −1) : # s p l i t i n t o s m a l l e r s t e p s u s i n g l i n s p a c e s
d i c t l e n = l e n (d i c t)
i f (d f [’ x ’] [i] ! = d f [’ x ’] [i +1] and df [’ y ’] [i] ! = d f [’ y ’] [i + 1]) :

x=np . l i n s p a c e (d f [’ x ’] [i] , d f [’ x ’] [i +1] , num=4)
y=np . l i n s p a c e (d f [’ y ’] [i] , d f [’ y ’] [i +1] , num=4)
t =np . l i n s p a c e (d f [’ t h e t a ’] [i] , d f [’ t h e t a ’] [i +1] , num=4)
f o r j i n r a n g e (3) :

d i c t [d i c t l e n + j] = { ’ x ’ : x [j] , ’ y ’ : y [j] , ’ t h e t a ’ : t [j]}
e l s e :

x=np . l i n s p a c e (d f [’ x ’] [i] , d f [’ x ’] [i +1] , num=4)
y=np . l i n s p a c e (d f [’ y ’] [i] , d f [’ y ’] [i +1] , num=4)
t =np . l i n s p a c e (d f [’ t h e t a ’] [i] , d f [’ t h e t a ’] [i +1] , num=4)
f o r j i n r a n g e (3) :

d i c t [d i c t l e n + j] = { ’ x ’ : x [j] , ’ y ’ : y [j] , ’ t h e t a ’ : t [j]}

d i c t l e n = l e n (d i c t)
f o r i i n r a n g e (mea su r eme n t t i me) : # f i l l i n t ime a t p o i n t

d i c t [d i c t l e n + i] = { ’ x ’ : d f [’ x ’] . i l o c [− 1] , ’ y ’ : d f [’ y ’] . i l o c [− 1] , ’ t h e t a ’ :
d f [’ t h e t a ’] . i l o c [−1]}

newframe = pd . DataFrame . f r o m d i c t (d i c t , ” i n d e x ”)

145

newframe . t o c s v (’ f i n a l p a t h s l o w . csv ’ , i n d e x = F a l s e)

C.3.2 Position CR6 Joiner.py

i m p o r t pandas as pd
i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from tqdm i m p o r t tqdm
from d a t e t i m e i m p o r t d a t e t i m e
from d a t e t i m e i m p o r t t i m e d e l t a

p o s i t i o n p a t h = ” . / Data / ”
d a t a p a t h = ” . / Data / RealRun / ”
o u t p u t p a t h =” . / ”

’ ’ ’ C r e a t e s i n g l e CR6 d a t a f r a m e wi th d a t e t i m e f o r c o m p a r i s o n s ’ ’ ’
d i c t ={}
f o r i i n tqdm (r a n g e (5 4 6 2 , 1 3 7 7 4)) : # c r e a t e d a t a f r a m e of a l l CR6 d a t a

t r y :
o u t p u t s i z e = l e n (d i c t)

df CR6 = pd . r e a d t a b l e (d a t a p a t h +” Younng10Hz ”+ s t r (i) +” . d a t ” ,
sep =” , ” ,

s k i p r o w s = [0 , 2 , 3])

f o r j i n r a n g e (l e n (df CR6)) :
i f ” . ” i n df CR6 [’TIMESTAMP ’] [j] :

d a t e = d a t e t i m e . s t r p t i m e (df CR6 [’TIMESTAMP ’] [j] , ’%Y−%m−%d %H
:%M:%S.% f ’)

e l s e :
d a t e = d a t e t i m e . s t r p t i m e (df CR6 [’TIMESTAMP ’] [j] , ’%Y−%m−%d %H

:%M:%S ’)

d i c t [o u t p u t s i z e + j]={ ”TIMESTAMP” : da t e , ” Record ” : df CR6 [’RECORD’] [j] ,
”U (m s ˆ −1) ” : df CR6 [’U’] [j] , ”V (m s ˆ −1) ” : df CR6 [’V’] [j] , ”W (m
s ˆ −1) ” : df CR6 [’W’] [j] , ” TSonic (K) ” : df CR6 [’ TSonic ’] [j] , ”RH (%)
” : df CR6 [’RH’] [j] , ”T HMP60 (C) ” : df CR6 [’T HMP60 ’] [j]}

146

e x c e p t : # i f t h e f i l e i s m i s s i n g j u s t s k i p i t (t h i s happens twice , n o t h i n g
needed l u c k i l y)
p a s s

df CR6 = pd . DataFrame . f r o m d i c t (d i c t , ” i n d e x ”) # c o n v e r t d i c t t o d a t a f r a m e (
t h i s i s f a s t e r)

’ ’ ’START LOOP HERE ! ! ! ’ ’ ’
i n p u t F i l e s = [’ 2020 −10 −02 16 −00. x l s x ’ , ’ 2020 −10 −02 16 −30. x l s x ’ , ’ 2020 −10 −02

17 −00. x l s x ’ , ’ 2020 −10 −02 17 −31. x l s x ’ , ’ 2020 −10 −02 18 −00. x l s x ’ , ’ 2020 −10 −02
18 −30. x l s x ’ , ’ 2020 −10 −02 19 −00. x l s x ’ , ’ 2020 −10 −02 19 −30. x l s x ’ , ’ 2020 −10 −02
20 −00. x l s x ’ , ’ 2020 −10 −02 20 −30. x l s x ’ , ’ 2020 −10 −02 21 −00. x l s x ’ , ’ 2020 −10 −02
21 −30. x l s x ’ , ’ 2020 −10 −02 22 −00. x l s x ’ , ’ 2020 −10 −02 22 −30. x l s x ’ , ’ 2020 −10 −02
23 −00. x l s x ’ , ’ 2020 −10 −02 23 −30. x l s x ’ , ’ 2020 −10 −03 00 −00. x l s x ’ , ’ 2020 −10 −03
00 −30. x l s x ’ , ’ 2020 −10 −03 01 −00. x l s x ’ , ’ 2020 −10 −03 01 −30. x l s x ’ , ’ 2020 −10 −03
02 −00. x l s x ’ , ’ 2020 −10 −03 02 −30. x l s x ’ , ’ 2020 −10 −03 03 −00. x l s x ’ , ’ 2020 −10 −03
03 −30. x l s x ’ , ’ 2020 −10 −03 04 −00. x l s x ’ , ’ 2020 −10 −03 04 −30. x l s x ’ , ’ 2020 −10 −03
05 −00. x l s x ’ , ’ 2020 −10 −03 05 −30. x l s x ’ , ’ 2020 −10 −03 06 −00. x l s x ’ , ’ 2020 −10 −03
06 −30. x l s x ’ , ’ 2020 −10 −03 07 −00. x l s x ’ , ’ 2020 −10 −03 07 −30. x l s x ’ , ’ 2020 −10 −08
08 −00. x l s x ’ , ’ 2020 −10 −08 08 −30. x l s x ’ , ’ 2020 −10 −08 09 −00. x l s x ’ , ’ 2020 −10 −08
09 −30. x l s x ’ , ’ 2020 −10 −08 10 −00. x l s x ’ , ’ 2020 −10 −08 10 −30. x l s x ’ , ’ 2020 −10 −08
11 −00. x l s x ’ , ’ 2020 −10 −08 11 −30. x l s x ’ , ’ 2020 −10 −08 12 −00. x l s x ’ , ’ 2020 −10 −08
12 −30. x l s x ’ , ’ 2020 −10 −08 13 −00. x l s x ’ , ’ 2020 −10 −08 13 −30. x l s x ’ , ’ 2020 −10 −08
14 −00. x l s x ’ , ’ 2020 −10 −08 14 −30. x l s x ’ , ’ 2020 −10 −08 15 −00. x l s x ’ , ’ 2020 −10 −02
15 −30. x l s x ’]

o u t p u t F i l e s = [’ 16−00 ’ , ’ 16−30 ’ , ’ 17−00 ’ , ’ 17−30 ’ , ’ 18−00 ’ , ’ 18−30 ’ , ’ 19−00 ’ , ’ 19−30 ’
, ’ 20−00 ’ , ’ 20−30 ’ , ’ 21−00 ’ , ’ 21−30 ’ , ’ 22−00 ’ , ’ 22−30 ’ , ’ 23−00 ’ , ’ 23−30 ’ , ’ 00−00 ’ , ’
00−30 ’ , ’ 01−00 ’ , ’ 01−30 ’ , ’ 02−00 ’ , ’ 02−30 ’ , ’ 03−00 ’ , ’ 03−30 ’ , ’ 04−00 ’ , ’ 04−30 ’ , ’
05−00 ’ , ’ 05−30 ’ , ’ 06−00 ’ , ’ 06−30 ’ , ’ 07−00 ’ , ’ 07−30 ’ , ’ 08−00 ’ , ’ 08−30 ’ , ’ 09−00 ’ , ’
09−30 ’ , ’ 10−00 ’ , ’ 10−30 ’ , ’ 11−00 ’ , ’ 11−30 ’ , ’ 12−00 ’ , ’ 12−30 ’ , ’ 13−00 ’ , ’ 13−30 ’ , ’
14−00 ’ , ’ 14−30 ’ , ’ 15−00 ’ , ’ 15−30 ’]

f o r j i n tqdm (r a n g e (l e n (i n p u t F i l e s))) :
d f p o s = pd . r e a d e x c e l (p o s i t i o n p a t h + i n p u t F i l e s [j] , h e a d e r =None)
d f p o s . columns = [’TIMESTAMP ’ , ’X’ , ’Y’ , ’THETA ’]

’ ’ ’ C r e a t e p r o p e r t i m e s t a m p s f o r p o s i t i o n ’ ’ ’
d i c t ={}

147

f o r i i n tqdm (r a n g e (l e n (d f p o s))) :
d i c t [i]={ ’TIMESTAMP ’ : d a t e t i m e . f r o m o r d i n a l (i n t (d f p o s [’TIMESTAMP ’] [i])

) + t i m e d e l t a (days = d f p o s [’TIMESTAMP ’] [i]%1) − t i m e d e l t a (days =
366) , ’X’ : d f p o s [’X’] [i] , ’Y’ : d f p o s [’Y’] [i] , ’THETA ’ : d f p o s [’THETA ’
] [i]}

d f p o s = pd . DataFrame . f r o m d i c t (d i c t , ” i n d e x ”)

’ ’ ’ Trim CR6 d a t a based on t i m e s t a m p s from p o s i t i o n d a t a . Use new d a t a f r a m e
. ’ ’ ’

d f C R 6 t r i m = df CR6 . i l o c [df CR6 . i n d e x [(df CR6 [’TIMESTAMP ’] == d f p o s [’
TIMESTAMP ’] . i l o c [0] . round (’ 100ms ’))] . t o l i s t () [0] :

df CR6 . i n d e x [(df CR6 [’TIMESTAMP ’] == d f p o s [’
TIMESTAMP ’] . i l o c [− 1] . round (’ 100ms ’))] . t o l i s t ()
[0]]

d f C R 6 t r i m . r e s e t i n d e x (i n p l a c e =True , drop =True)

’ ’ ’ C r e a t e a combined d a t a b a s e ’ ’ ’
d i c t ={}
f o r i i n tqdm (r a n g e (l e n (d f C R 6 t r i m))) :

d a t e = d f C R 6 t r i m [”TIMESTAMP”] . i l o c [i]
i n d e x = (d f p o s [’TIMESTAMP ’] − d a t e) . abs () . a r g s o r t () [: 2] . i l o c [1]

x = d f p o s [’X’] . i l o c [i n d e x]
y = d f p o s [’Y’] . i l o c [i n d e x]
t h e t a = d f p o s [’THETA ’] . i l o c [i n d e x]

d i c t [i]= {” Year ” : d a t e . year , ” Month ” : d a t e . month , ”Day” : d a t e . day , ” Hour ” :
d a t e . hour ,

” Minute ” : d a t e . minute , ” Second ” : d a t e . second + d a t e . mic rosecond
/ 1 0 0 0 0 0 0 . ,

” x ” : x , ” y ” : y , ” t h e t a ” : t h e t a ,
” Record ” : d f C R 6 t r i m [’ Record ’] [i] , ”U (m s ˆ −1) ” : d f C R 6 t r i m [’

U (m s ˆ −1) ’] [i] , ”V (m s ˆ −1) ” : d f C R 6 t r i m [’V (m s ˆ −1) ’] [i
] ,

”W (m s ˆ −1) ” : d f C R 6 t r i m [’W (m s ˆ −1) ’] [i] , ” TSonic (K) ” :
d f C R 6 t r i m [’ TSonic (K) ’] [i] , ”RH (%) ” : d f C R 6 t r i m [’RH

148

(%) ’] [i] ,
”T HMP60 (C) ” : d f C R 6 t r i m [’T HMP60 (C) ’] [i]}

df comb = pd . DataFrame . f r o m d i c t (d i c t , ” i n d e x ”)

’ ’ ’ C r e a t e M u l t i I n d e x based on each p o i n t ’ ’ ’
p o i n t d i c t ={ ’ p1 ’ : [2 . 8 , 0 . 7 , 0] , ’ p2 ’ : [6 . 0 , 0 . 7 , 0] , ’ p3 ’ : [6 . 0 , 4 . 4 , 0] , ’ p4 ’

: [2 . 8 , 4 . 4 , 0] ,
’ p5 ’ : [6 . 0 , 7 . 9 , 0] , ’ p6 ’ : [2 . 8 , 7 . 9 , 0] , ’ p7 ’ : [6 . 0 , 1 0 . 6 , 0] , ’ p8 ’

: [4 . 9 , 1 1 . 8 , 0] }

drop =50 # f r e q u e n c y * s e c o n d s t o drop , make s u r e t h e r o b o t i s i n t h e c o r r e c t
p o s i t o n

d i c t ={ ’ p1 ’ :{} , ’ p2 ’ :{} , ’ p3 ’ :{} , ’ p4 ’ :{} , ’ p5 ’ :{} , ’ p6 ’ :{} , ’ p7 ’ :{} , ’ p8 ’ :{}}

f o r i i n tqdm (r a n g e (drop , l e n (df comb) −drop)) :
i f ([df comb [’ x ’] . i l o c [i − drop] , df comb [’ y ’] . i l o c [i − drop] , df comb [’

t h e t a ’] . i l o c [i − drop]] i n p o i n t d i c t . v a l u e s () and
[df comb [’ x ’] . i l o c [i + drop] , df comb [’ y ’] . i l o c [i + drop] , df comb [’ t h e t a

’] . i l o c [i + drop]] i n p o i n t d i c t . v a l u e s () and
[df comb [’ x ’] . i l o c [i] , df comb [’ y ’] . i l o c [i] , df comb [’ t h e t a ’] . i l o c [i

]] i n p o i n t d i c t . v a l u e s ()) : #Check t h a t i t has been t h e r e f o r a
w h i l e

p o i n t = l i s t (p o i n t d i c t . keys ()) [l i s t (p o i n t d i c t . v a l u e s ()) . i n d e x ([
df comb [’ x ’] . i l o c [i] , df comb [’ y ’] . i l o c [i] , df comb [’ t h e t a ’] .
i l o c [i]])] # g e t t h e p o i n t

d i c t [p o i n t] [i]= df comb . i l o c [i] . t o d i c t ()

d i c t o f d f = {k : pd . DataFrame (v) f o r k , v i n d i c t . i t e m s () }
o u t p u t = pd . c o n c a t (d i c t o f d f , a x i s =1) . t r a n s p o s e ()
o u t p u t . t o c s v (’ . / Data / Binned Data / ’+ o u t p u t F i l e s [j]+ ’ . c sv ’ , i n d e x =True) #

save d a t d a t a

C.3.3 YOUNG81000 HMP60 10Hz.CR6

149

’To c r e a t e a d i f f e r e n t open ing program t e m p l a t e , t y p e i n new
’ i n s t r u c t i o n s and s e l e c t Templa te | Save as D e f a u l t Templa te

’ Date : 2020 −09 −20
’ Program a u t h o r : Benjamin Dyer

PipeLineMode

P u b l i c PTemp C , BattV , D i f f V o l t 1 , D i f f V o l t 2 , D i f f V o l t 3 , D i f f V o l t 4 , T HMP60
, RH

Dim Flag As Boolean

A l i a s D i f f V o l t 1 = U
A l i a s D i f f V o l t 2 = V
A l i a s D i f f V o l t 3 = W
A l i a s D i f f V o l t 4 = TSonic

U n i t s Bat tV= V o l t s
U n i t s PTemp C=Deg C
U n i t s D i f f V o l t 1 =mV
U n i t s D i f f V o l t 2 =mV
U n i t s D i f f V o l t 3 =mV
U n i t s D i f f V o l t 4 =mV
U n i t s T HMP60=Deg C
U n i t s RH=%

’ D e c l a r e P r i v a t e V a r i a b l e s
’ Example :
’Dim Coun te r

’ De f i ne Data T a b l e s
Da taTab le (Young10Hz hmp , True , 1 0 0 0 0) ’ S e t t a b l e s i z e t o # of r e c o r d s , o r −1 t o

a u t o a l l o c a t e .
T a b l e F i l e (”CRD: Younng10Hz ” , 8 , − 1 , 6 0 0 , 0 , Min , 0 , 0)

D a t a I n t e r v a l (0 , 1 0 0 , mSec , 1 0)
’ T a b l e F i l e (”CRD: T e s t ” , 6 4 , − 1 , 0 , 6 0 , Min , 0 , 0)

Sample (1 , D i f f V o l t 1 , FP2)
Sample (1 , D i f f V o l t 2 , FP2)
Sample (1 , D i f f V o l t 3 , FP2)
Sample (1 , D i f f V o l t 4 , FP2)

150

Sample (1 ,RH, FP2)
Sample (1 , T HMP60 , FP2)

EndTable

Da taTab le (CR6 tab , True , − 1)
D a t a I n t e r v a l (0 , 1 , Min , 1 0)
Minimum (1 , BattV , FP2 , F a l s e , F a l s e)

EndTable

’ De f i ne S u b r o u t i n e s
’ Sub

’ En te rSub i n s t r u c t i o n s h e r e
’ EndSub

’ Main Program
BeginProg

Scan (1 0 0 , mSec , 8 , 0)
V o l t D i f f (D i f f V o l t 1 , 1 , mV5000 , U1 , F a l s e , 2 0 , 1 5 0 0 0 , 0 . 0 0 4 , − 1 0)
V o l t D i f f (D i f f V o l t 2 , 1 , mV5000 , U3 , F a l s e , 2 0 , 1 5 0 0 0 , 0 . 0 0 4 , − 1 0)
V o l t D i f f (D i f f V o l t 3 , 1 , mV5000 , U5 , F a l s e , 2 0 , 1 5 0 0 0 , 0 . 0 0 4 , − 1 0)
V o l t D i f f (D i f f V o l t 4 , 1 , mV5000 , U7 , F a l s e , 2 0 , 1 5 0 0 0 , 0 . 0 2 , 2 2 0)

Vol tSe (T HMP60 , 1 , mV1000 , U9 , F a l s e , 0 , 6 0 , 0 . 1 , − 4 0)
Vol tSe (RH, 1 , mV1000 , U10 , F a l s e , 0 , 6 0 , 0 . 1 , 0)
I f (RH>100) AND (RH<108) Then RH=100

I f T i m e I n t o I n t e r v a l (0 , 5 , Sec) Then F lag = t r u e

C a l l T a b l e Young10Hz hmp
C a l l T a b l e CR6 tab

NextScan

EndProg

C.3.4 Analysis.py

i m p o r t pandas as pd
i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from tqdm i m p o r t tqdm
from d a t e t i m e i m p o r t d a t e t i m e

151

from d a t e t i m e i m p o r t t i m e d e l t a
i m p o r t m a t p l o t l i b . t i c k e r a s t i c k e r
i m p o r t i t e r t o o l s
from numpy . l i b i m p o r t s c i m a t h as SM

’ ’ ’ C r e a t e empty Data f rame ’ ’ ’
my index = pd . M u l t i I n d e x (l e v e l s = [[] , [] , []] ,

codes = [[] , [] , []] ,
names =[u ’ STime ’ , u ’ P o i n t ’ , u ’ Index ’])

my columns = [u ’ Year ’ , u ’ Month ’ , u ’Day ’ , u ’ Hour ’ , u ’ Minute ’ , u ’ Second ’ , u ’ x ’ , u ’ y ’ , u
’ t h e t a ’ , u ’ Record ’ , u ’U (m s ˆ −1) ’ , u ’V (m s ˆ −1) ’ , u ’W (m s ˆ −1) ’ , u ’ TSonic (K) ’ ,
u ’RH (%) ’ , u ’T HMP60 (C) ’]

d a t a = pd . DataFrame (i n d e x =my index , columns=my columns)

’ ’ ’IMPORT DATA ’ ’ ’
f i l e s = [’ 08−00 ’ , ’ 08−30 ’ , ’ 09−00 ’ , ’ 09−30 ’ , ’ 10−00 ’ , ’ 10−30 ’ , ’ 11−00 ’ , ’ 11−30 ’ ,

’ 12−00 ’ , ’ 12−30 ’ , ’ 13−00 ’ , ’ 13−30 ’ , ’ 14−00 ’ , ’ 14−30 ’ , ’ 15−00 ’ , ’ 15−30 ’ ,
’ 16−00 ’ , ’ 16−30 ’ , ’ 17−00 ’ , ’ 17−30 ’ , ’ 18−00 ’ , ’ 18−30 ’ , ’ 19−00 ’ , ’ 19−30 ’ ,
’ 20−00 ’ , ’ 20−30 ’ , ’ 21−00 ’ , ’ 21−30 ’ , ’ 22−00 ’ , ’ 22−30 ’ , ’ 23−00 ’ , ’ 23−30 ’ ,
’ 00−00 ’ , ’ 00−30 ’ , ’ 01−00 ’ , ’ 01−30 ’ , ’ 02−00 ’ , ’ 02−30 ’ , ’ 03−00 ’ , ’ 03−30 ’ ,
’ 04−00 ’ , ’ 04−30 ’ , ’ 05−00 ’ , ’ 05−30 ’ , ’ 06−00 ’ , ’ 06−30 ’ , ’ 07−00 ’ , ’ 07−30 ’]

f o r i i n tqdm (f i l e s) :
temppd = pd . r e a d c s v (’ . / Data / Binned Data / ’+ i + ’ . c sv ’ , i n d e x c o l = [0 , 1])

append d a t a f r a m e i n t o m u l t i f r a m e
d a t a = d a t a . append (temppd . a s s i g n (k= i) . s e t i n d e x (’ k ’ , append=True) . s w a p l e v e l

(0 , 2) . s w a p l e v e l (1 , 2))

d e f c r o s s c o r r (x , y , l a g) :

xmean = np . mean (x)
ymean = np . mean (y)
N = l e n (x)
c r o s s = np . z e r o s ((N, 1))
t o t = 0

f o r j i n r a n g e (l a g) :
temp1 =0
temp2 =0
temp3 =0

152

xk=0
yk=0
x k j =0
y k j =0
f o r k i n r a n g e (N−j −1) :

xk + = 1 / (N− j) *x [k]
yk + = 1 / (N− j) *y [k]
x k j + = 1 / (N− j) *x [k+ j]
y k j + = 1 / (N− j) *y [k+ j]

f o r k i n r a n g e (N−j −1) :
temp1 += (x [k] − xk) * (y [k+ j] − y k j)
temp2 += (x [k] − xk) * (y [k] − yk)
temp3 += (x [k+ j] − x k j) * (y [k+ j] − y k j)

c r o s s [j]= temp1 / (SM. s q r t (temp2) *SM. s q r t (temp3))

i f np . s i g n (c r o s s [0]) != np . s i g n (c r o s s [j]) :
r e t u r n sum (c r o s s)

r e t u r n l a g

d e f psum (x , s i g n) :
sum = 0
s i g n = np . s i g n (x [0])
i f s i g n == −1:

x = [− i f o r i i n x]
f o r i i n r a n g e (l e n (x)) :

i f x [i]<0:
r e t u r n sum* s i g n

e l s e :
sum+=x [i]

r e t u r n sum* s i g n

p o i n t s =[’ p1 ’ , ’ p2 ’ , ’ p3 ’ , ’ p4 ’ , ’ p5 ’ , ’ p6 ’ , ’ p7 ’ , ’ p8 ’]

my index = pd . M u l t i I n d e x (l e v e l s = [[] , []] ,
codes = [[] , []] ,

names =[u ’ STime ’ , u ’ P o i n t ’])
my columns = [u ’ Uavg ’ , u ’ Vavg ’ , u ’Wavg ’ , ’ Savg ’ , u ’ TSonicavg ’ , u ’RHavg ’ , u ’

153

T HMP60avg ’ , u ’ Uvar ’ , u ’ U v a r r e r r ’ , u ’ Vvar ’ , u ’ V v a r r e r r ’ , u ’Wvar ’ , u ’ W v a r r e r r ’
, u ’ TSon icva r ’ , u ’ T S o n i c v a r r e r r ’ ,

u ’ k ’ , u ’ UVvar ’ , u ’ U V v a r r e r r ’ , u ’UWvar ’ , u ’ UWvar re r r ’ , u ’VWvar ’ , u ’
VWvar re r r ’ ,

u ’ UTvar ’ , u ’ U T v a r r e r r ’ , u ’ VTvar ’ , u ’ V T v a r r e r r ’ , u ’WTvar ’ , u ’
WTvar r e r r ’ ,

u ’PMV1’ , u ’PPD1 ’ , u ’PMV2’ , u ’PPD2 ’ , u ’PMV3’ , u ’PPD3 ’ , u ’PMV4’ , u ’PPD4 ’ , u
’PMV5’ , u ’PPD5 ’ , u ’PMV6’ , u ’PPD6 ’ ,]

p d a t a = pd . DataFrame (i n d e x =my index , columns=my columns)

N I n t e g r a l = 600
AverageSample = l e n (d a t a . l o c [(’ 08−00 ’ , ’ p1 ’) , ’U (m s ˆ −1) ’])
WindowLength= i n t (AverageSample / 2)
d t =0 .1
SampleTime=AverageSample / 1 0 .

RUU=np . z e r o s ((N I n t e g r a l , 1))
RVV=np . z e r o s ((N I n t e g r a l , 1))
RWW=np . z e r o s ((N I n t e g r a l , 1))
RTT=np . z e r o s ((N I n t e g r a l , 1))
RUV=np . z e r o s ((N I n t e g r a l , 1))
RVW=np . z e r o s ((N I n t e g r a l , 1))
RUW=np . z e r o s ((N I n t e g r a l , 1))
RUT=np . z e r o s ((N I n t e g r a l , 1))
RVT=np . z e r o s ((N I n t e g r a l , 1))
RWT=np . z e r o s ((N I n t e g r a l , 1))

RUUALL=np . z e r o s ((WindowLength , 1))
RVVALL=np . z e r o s ((WindowLength , 1))
RWWALL=np . z e r o s ((WindowLength , 1))
RTTALL=np . z e r o s ((WindowLength , 1))
RUVALL=np . z e r o s ((WindowLength , 1))
RVWALL=np . z e r o s ((WindowLength , 1))
RUWALL=np . z e r o s ((WindowLength , 1))
RUTALL=np . z e r o s ((WindowLength , 1))
RVTALL=np . z e r o s ((WindowLength , 1))
RWTALL=np . z e r o s ((WindowLength , 1))

f o r d t ime i n tqdm (f i l e s) :

154

f o r p o i n t i n p o i n t s :
p d a t a . l o c [(dt ime , p o i n t) , ’ Uavg ’] = np . mean (d a t a . l o c [(dt ime , p o i n t) , ’U (

m s ˆ −1) ’])
p d a t a . l o c [(dt ime , p o i n t) , ’ Vavg ’] = np . mean (d a t a . l o c [(dt ime , p o i n t) , ’V (

m s ˆ −1) ’])
p d a t a . l o c [(dt ime , p o i n t) , ’Wavg ’] = np . mean (d a t a . l o c [(dt ime , p o i n t) , ’W (

m s ˆ −1) ’])
p d a t a . l o c [(dt ime , p o i n t) , ’ TSonicavg ’] = np . mean (d a t a . l o c [(dt ime , p o i n t)

, ’ TSonic (K) ’])
p d a t a . l o c [(dt ime , p o i n t) , ’RHavg ’] = np . mean (d a t a . l o c [(dt ime , p o i n t) , ’RH

(%) ’])
p d a t a . l o c [(dt ime , p o i n t) , ’ T HMP60avg ’] = np . mean (d a t a . l o c [(dt ime , p o i n t

) , ’T HMP60 (C) ’]) +273.15 # s h i f t t o K e lv in
p d a t a . l o c [(dt ime , p o i n t) , ’ Savg ’] = np . mean (np . s q r t (d a t a . l o c [(dt ime ,

p o i n t) , ’U (m s ˆ −1) ’]**2+
d a t a . l o c [(dt ime ,

p o i n t) , ’V (m s
ˆ −1) ’]**2+

d a t a . l o c [(dt ime ,
p o i n t) , ’W (m s
ˆ −1) ’] * * 2))

x = [j f o r j i n r a n g e (0 , l e n (d a t a . l o c [(dt ime , p o i n t) , ’U (m s ˆ −1) ’]))]
U = d a t a . l o c [(dt ime , p o i n t) , ’U (m s ˆ −1) ’]
Umodel = np . p o l y f i t (x , U, 1)
Ut rend = np . p o l y v a l (Umodel , x)
Ude t r ended = U − Utrend
V = d a t a . l o c [(dt ime , p o i n t) , ’V (m s ˆ −1) ’]
Vmodel = np . p o l y f i t (x , V, 1)
Vt rend = np . p o l y v a l (Vmodel , x)
Vde t r ended = V − Vtrend

W = d a t a . l o c [(dt ime , p o i n t) , ’W (m s ˆ −1) ’]
Wmodel = np . p o l y f i t (x ,W, 1)
Wtrend = np . p o l y v a l (Wmodel , x)
Wdetrended = W − Wtrend
TSonic = d a t a . l o c [(dt ime , p o i n t) , ’ TSonic (K) ’]
TSonicmodel = np . p o l y f i t (x , TSonic , 1)
T S o n i c t r e n d = np . p o l y v a l (TSonicmodel , x)
T S o n i c d e t r e n d e d = TSonic − T S o n i c t r e n d

155

UVCovMatrix = np . cov (Udet rended , Vde t r ended)
UWCovMatrix = np . cov (Udet rended , Wdetrended)
VWCovMatrix = np . cov (Vdet rended , Wdetrended)
UTSonicCovMatrix = np . cov (Udet rended , T S o n i c d e t r e n d e d)
VTSonicCovMatrix = np . cov (Vdet rended , T S o n i c d e t r e n d e d)
WTSonicCovMatrix = np . cov (Wdetrended , T S o n i c d e t r e n d e d)

p d a t a . l o c [(dt ime , p o i n t) , ’ Uvar ’] = UVCovMatrix [0 , 0]
p d a t a . l o c [(dt ime , p o i n t) , ’ Vvar ’] = UVCovMatrix [1 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’Wvar ’] = UWCovMatrix [1 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’ TSon icva r ’] = UTSonicCovMatrix [1 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’ k ’] = 1 / 2 * (p d a t a . l o c [(dt ime , p o i n t) , ’ Uvar ’]+

p d a t a . l o c [(dt ime , p o i n t) , ’ Vvar ’]+ p d a t a . l o c [(dt ime , p o i n t) , ’Wvar ’])

p d a t a . l o c [(dt ime , p o i n t) , ’ UVvar ’] = UVCovMatrix [0 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’UWvar ’] = UWCovMatrix [0 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’VWvar ’] = VWCovMatrix [0 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’ UTvar ’] = UTSonicCovMatrix [0 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’ VTvar ’] = VTSonicCovMatrix [0 , 1]
p d a t a . l o c [(dt ime , p o i n t) , ’WTvar ’] = WTSonicCovMatrix [0 , 1]

Ude t r ended = Ude t r ended . to numpy ()
Vde t r ended = Vde t r ended . to numpy ()
Wdetrended = Wdetrended . to numpy ()
T S o n i c d e t r e n d e d = T S o n i c d e t r e n d e d . to numpy ()

C a l c u l a t e i n t e g r a l s c a l e s (t h e s e a r e t y p i c a l l y on t h e s c a l e o f 1−5
s e c o n d s)

TauUU = c r o s s c o r r (Udet rended , Udet rended , N I n t e g r a l) * d t
TauVV = c r o s s c o r r (Vdet rended , Vdet rended , N I n t e g r a l) * d t
TauWW = c r o s s c o r r (Wdetrended , Wdetrended , N I n t e g r a l) * d t
TauTT = c r o s s c o r r (T S o n i c d e t r e n d e d , T S o n i c d e t r e n d e d , N I n t e g r a l) * d t
TauUV = c r o s s c o r r (Udet rended , Vdet rended , N I n t e g r a l) * d t
TauUW = c r o s s c o r r (Udet rended , Wdetrended , N I n t e g r a l) * d t
TauVW = c r o s s c o r r (Vdet rended , Wdetrended , N I n t e g r a l) * d t
TauUT = c r o s s c o r r (Udet rended , T S o n i c d e t r e n d e d , N I n t e g r a l) * d t
TauVT = c r o s s c o r r (Vdet rended , T S o n i c d e t r e n d e d , N I n t e g r a l) * d t
TauWT = c r o s s c o r r (Wdetrended , T S o n i c d e t r e n d e d , N I n t e g r a l) * d t

A d j u s t f o r S y s t e m a t i c E r r o r

156

p d a t a . l o c [(dt ime , p o i n t) , ’ Uvar ’] *=2*TauUU / SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’ Vvar ’] *=2*TauVV / SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’Wvar ’] *=2*TauWW/ SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’ TSon icva r ’] *=2*TauTT / SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’ UVvar ’] *=2*TauUV / SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’UWvar ’] *=2*TauUW/ SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’VWvar ’] *=2*TauVW/ SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’ UTvar ’] *=2*TauUT / SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’ VTvar ’] *=2*TauVT / SampleTime +1
p d a t a . l o c [(dt ime , p o i n t) , ’WTvar ’] *=2*TauWT / SampleTime +1

Save t h e Random E r r o r (In c a s e you want t o check i t)
p d a t a . l o c [(dt ime , p o i n t) , ’ U v a r r e r r ’] =np . s q r t (2*TauUU / SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ V v a r r e r r ’] =np . s q r t (2*TauVV / SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ W v a r r e r r ’] =np . s q r t (2*TauWW/ SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ T S o n i c v a r r e r r ’] =np . s q r t (2* TauTT / SampleTime

)
p d a t a . l o c [(dt ime , p o i n t) , ’ U V v a r r e r r ’] =np . s q r t (2*TauUV / SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ UWvar re r r ’] =np . s q r t (2*TauUW/ SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ VWvar re r r ’] =np . s q r t (2*TauVW/ SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ U T v a r r e r r ’] =np . s q r t (2* TauUT / SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ V T v a r r e r r ’] =np . s q r t (2* TauVT / SampleTime)
p d a t a . l o c [(dt ime , p o i n t) , ’ WTvar r e r r ’] =np . s q r t (2*TauWT / SampleTime)

’ ’ ’ C a l i b r a t e t h e USonic t e m p e r a t u r e s ’ ’ ’

p l t . s c a t t e r (p d a t a [’ TSonicavg ’] , p d a t a [’ T HMP60avg ’]) # check pre − c a l i b r a t i o n
i f d e s i r e d

p l t . show ()

p r i n t (p d a t a [’ TSonicavg ’] . t o l i s t ())
r e s u l t s = {}
x= p d a t a [’ TSonicavg ’] . t o l i s t ()
y= p d a t a [’ T HMP60avg ’] . t o l i s t ()

c o e f f s = np . p o l y f i t (x , y , 1)

r e s u l t s [’ p o l y n o m i a l ’] = c o e f f s . t o l i s t ()
r − s q u a r e d
p = np . po ly1d (c o e f f s)

157

f i t v a l u e s , and mean
y h a t = p (x) # o r [p (z) f o r z i n x]
yba r = np . sum (y) / l e n (y) # o r sum (y) / l e n (y)
s s r e g = np . sum ((yha t − yba r) **2) # o r sum ([(y i h a t − yba r) **2 f o r y i h a t i n

y h a t])
s s t o t = np . sum ((y − yba r) **2) # o r sum ([(y i − yba r) **2 f o r y i i n y])
r e s u l t s [’ d e t e r m i n a t i o n ’] = s s r e g / s s t o t

p r i n t (r e s u l t s)

p d a t a [’ TSonicavg ’]= p d a t a [’ TSonicavg ’]* r e s u l t s [’ p o l y n o m i a l ’] [0] + r e s u l t s [’
p o l y n o m i a l ’] [1]

d e f c a l c u l a t e P m v (ta , t r , ve l , rh , met , c lo , wme) : #THIS CALCULATES PMV AND PPD
(SUPER USEFUL !)

r e t u r n s [pmv , ppd]
ta , a i r t e m p e r a t u r e (C)
t r , mean r a d i a n t t e m p e r a t u r e (C)
ve l , r e l a t i v e a i r speed (m/ s)
rh , r e l a t i v e h u m i d i t y (%) Used on ly t h i s way t o i n p u t h u m i d i t y l e v e l
#met , m e t a b o l i c r a t e (met)
c lo , c l o t h i n g (c l o)
#wme, e x t e r n a l work , n o r m a l l y a round 0 (met)

pa = rh * 10 * np . exp (1 6 . 6 5 3 6 − 4030 .183 / (t a + 235))

i c l = 0 .155 * c l o # t h e r m a l i n s u l a t i o n o f t h e c l o t h i n g i n [mˆ2 K Wˆ −1]
m = met * 58 .15 # m e t a b o l i c r a t e i n [W mˆ −2]
w = wme * 58 .15 # e x t e r n a l work i n [W mˆ −2]
mw = m − w # i n t e r n a l h e a t p r o d u c t i o n i n t h e human body

f c l = 1 + 1 . 2 9 * i c l i f i c l <= 0 .078 e l s e 1 . 0 5 + 0 .645 * i c l

h e a t t r a n s f . c o e f f . by f o r c e d c o n v e c t i o n
h c f = 1 2 . 1 * np . s q r t (v e l)
t a a = t a + 273
t r a = t r + 273
#we have v e r i f i e d t h a t u s i n g t h e e q u a t i o n below or t h i s t c l a = t a a + (3 5 . 5

− t a) / (3 . 5 * (6 . 4 5 * i c l + . 1)) does n o t a f f e c t t h e PMV v a l u e
t c l a = t a a + (3 5 . 5 − t a) / (3 . 5 * i c l + 0 . 1)

158

p1 = i c l * f c l
p2 = p1 * 3 . 9 6
p3 = p1 * 100
p4 = p1 * t a a
p5 = 308 .7 − 0 .028 * mw + p2 * (t r a / 100) ** 4

xn = t c l a / 100
xf = t c l a / 50
eps = 0 .00015

n = 0
hc = 0
w h i l e (np . abs (xn − xf) > eps) :

x f = (x f + xn) / 2
hcn = 2 . 3 8 * np . abs (1 0 0 . 0 * xf − t a a) ** 0 . 2 5
hc = h c f i f h c f > hcn e l s e hcn

xn = (p5 + p4 * hc − p2 * xf ** 4) / (100 + p3 * hc)
n+=1
i f (n > 150) :

p r i n t (”Max i t e r a t i o n s exceeded ”)
r e t u r n 1

t c l = 100 * xn − 273 ;

h e a t l o s s d i f f . t h r o u g h s k i n
h l 1 = 3 . 0 5 * 0 .001 * (5733 − 6 . 9 9 * mw − pa)
h e a t l o s s by s w e a t i n g
h l 2 = 0 . 4 2 * (mw − 5 8 . 1 5) i f (mw > 5 8 . 1 5) e l s e 0
l a t e n t r e s p i r a t i o n h e a t l o s s
h l 3 = 1 . 7 * 0 .00001 * m * (5867 − pa)
dry r e s p i r a t i o n h e a t l o s s
h l 4 = 0 .0014 * m * (34 − t a)
h e a t l o s s by r a d i a t i o n
h l 5 = 3 . 9 6 * f c l * (xn ** 4 − (t r a / 100) ** 4)
h e a t l o s s by c o n v e c t i o n
h l 6 = f c l * hc * (t c l − t a)

159

t s = 0 .303 * np . exp (−0 .036 * m) + 0 .028
pmv = t s * (mw − h l 1 − h l 2 − h l 3 − h l 4 − h l 5 − h l 6)
ppd = 100 .0 − 9 5 . 0 * np . exp (−0 .03353 * pmv ** 4 . 0 − 0 .2179 * pmv ** 2 . 0)

r e t u r n [pmv , ppd]

f o r d t ime i n tqdm (f i l e s) :
f o r p o i n t i n p o i n t s :

PMV= c a l c u l a t e P m v (p d a t a . l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273 , p d a t a .
l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273+0 .3 , p d a t a . l o c [(dt ime , p o i n t) , ’
Savg ’] , p d a t a . l o c [(dt ime , p o i n t) , ’RHavg ’] , 1 . 1 , 0 . 5 7 , 0)

p d a t a . l o c [(dt ime , p o i n t) , ’PMV1’] = PMV[0]
p d a t a . l o c [(dt ime , p o i n t) , ’PPD1 ’] = PMV[1]

PMV= c a l c u l a t e P m v (p d a t a . l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273 , p d a t a .
l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273+0 .3 , p d a t a . l o c [(dt ime , p o i n t) , ’
Savg ’] , p d a t a . l o c [(dt ime , p o i n t) , ’RHavg ’] , 1 . 1 , 0 . 7 4 , 0)

p d a t a . l o c [(dt ime , p o i n t) , ’PMV2’] = PMV[0]
p d a t a . l o c [(dt ime , p o i n t) , ’PPD2 ’] = PMV[1]

PMV= c a l c u l a t e P m v (p d a t a . l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273 , p d a t a .
l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273+0 .3 , p d a t a . l o c [(dt ime , p o i n t) , ’
Savg ’] , p d a t a . l o c [(dt ime , p o i n t) , ’RHavg ’] , 1 . 1 , 0 . 9 6 , 0)

p d a t a . l o c [(dt ime , p o i n t) , ’PMV3’] = PMV[0]
p d a t a . l o c [(dt ime , p o i n t) , ’PPD3 ’] = PMV[1]

PMV= c a l c u l a t e P m v (p d a t a . l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273 , p d a t a .
l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273+0 .3 , p d a t a . l o c [(dt ime , p o i n t) , ’
Savg ’] , p d a t a . l o c [(dt ime , p o i n t) , ’RHavg ’] , 1 . 7 , 0 . 5 7 , 0)

p d a t a . l o c [(dt ime , p o i n t) , ’PMV4’] = PMV[0]
p d a t a . l o c [(dt ime , p o i n t) , ’PPD4 ’] = PMV[1]

PMV= c a l c u l a t e P m v (p d a t a . l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273 , p d a t a .
l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273+0 .3 , p d a t a . l o c [(dt ime , p o i n t) , ’
Savg ’] , p d a t a . l o c [(dt ime , p o i n t) , ’RHavg ’] , 1 . 7 , 0 . 7 4 , 0)

p d a t a . l o c [(dt ime , p o i n t) , ’PMV5’] = PMV[0]

160

p d a t a . l o c [(dt ime , p o i n t) , ’PPD5 ’] = PMV[1]

PMV= c a l c u l a t e P m v (p d a t a . l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273 , p d a t a .
l o c [(dt ime , p o i n t) , ’ TSonicavg ’] −273+0 .3 , p d a t a . l o c [(dt ime , p o i n t) , ’
Savg ’] , p d a t a . l o c [(dt ime , p o i n t) , ’RHavg ’] , 1 . 7 , 0 . 9 6 , 0)

p d a t a . l o c [(dt ime , p o i n t) , ’PMV6’] = PMV[0]
p d a t a . l o c [(dt ime , p o i n t) , ’PPD6 ’] = PMV[1]

’ ’ ’ Below i s f o r s a v i n g f i g u r e s ’ ’ ’
f i g s a v e p a t h = ’ . / A n a l y s i s / F i g u r e s / 2 4 Hr ’

x a x i s l a b e l s = [’ 16−00 ’ , ’ 17−00 ’ , ’ 18−00 ’ , ’ 19−00 ’ ,
’ 20−00 ’ , ’ 21−00 ’ , ’ 22−00 ’ , ’ 23−00 ’ ,
’ 00−00 ’ , ’ 01−00 ’ , ’ 02−00 ’ , ’ 03−00 ’ ,
’ 04−00 ’ , ’ 05−00 ’ , ’ 06−00 ’ , ’ 07−00 ’ ,
’ 08−00 ’ , ’ 09−00 ’ , ’ 10−00 ’ , ’ 11−00 ’ ,
’ 12−00 ’ , ’ 13−00 ’ , ’ 14−00 ’ , ’ 15−00 ’]

marker = i t e r t o o l s . c y c l e ((’ . ’))
c o l o r s = { ’ p1 ’ : ’ b ’}

f i g = p l t . f i g u r e (f i g s i z e = (7 , 3) , d p i =600)
ax= p l t . s u b p l o t (1 1 1)
f o r i i n p o i n t s :

ax . p l o t (f i l e s , p d a t a . l o c [pd . I n d e x S l i c e [: , i] , ’ T HMP60avg ’] , marker = n e x t (
marker) , l i n e w i d t h =1 , l a b e l = i)

p l t . y l a b e l (r ’ $\ o v e r l i n e {T} {HMP60}$ [K] ’)
x l a b e l = p l t . x l a b e l (’ Time [EDT] ’)
p l t . x t i c k s (r o t a t i o n =40 , ha=” r i g h t ”)
l g d = ax . l e g e n d (b b o x t o a n c h o r = (1 . 0 1 , 1) , l o c = ’ uppe r l e f t ’)
p l t . x t i c k s (x a x i s l a b e l s)
p l t . s a v e f i g (f i g s a v e p a t h + ’ HMP60 T avg . pdf ’ , f o r m a t = ’ pdf ’ , b b o x e x t r a a r t i s t s =(

lgd , x l a b e l) , b b o x i n c h e s = ’ t i g h t ’)
p l t . show ()

f i g = p l t . f i g u r e (f i g s i z e = (7 , 3) , d p i =300)
ax= p l t . s u b p l o t (1 1 1)

161

f o r i i n p o i n t s :
ax . p l o t (f i l e s , p d a t a . l o c [pd . I n d e x S l i c e [: , i] , ’ TSonicavg ’] , marker = n e x t (

marker) , l i n e w i d t h =1 , l a b e l = i)
p l t . y l a b e l (r ’ $\ o v e r l i n e {T} {US}$ [K] ’)
x l a b e l = p l t . x l a b e l (’ Time [EDT] ’)
p l t . x t i c k s (r o t a t i o n =50 , ha=” r i g h t ”)
l g d = ax . l e g e n d (b b o x t o a n c h o r = (1 . 0 1 , 1) , l o c = ’ uppe r l e f t ’)
p l t . x t i c k s (x a x i s l a b e l s)
p l t . s a v e f i g (f i g s a v e p a t h + ’ Son icT avg . pdf ’ , f o r m a t = ’ pdf ’ , b b o x e x t r a a r t i s t s =(lgd

, x l a b e l) , b b o x i n c h e s = ’ t i g h t ’)
p l t . show ()

f i g = p l t . f i g u r e (f i g s i z e = (7 , 3) , d p i =300)
ax= p l t . s u b p l o t (1 1 1)
f o r i i n p o i n t s :

ax . p l o t (f i l e s , p d a t a . l o c [pd . I n d e x S l i c e [: , i] , ’RHavg ’] , marker = n e x t (
marker) , l i n e w i d t h =1 , l a b e l = i)

p l t . y l a b e l (r ’ $\ o v e r l i n e {RH}$ [%] ’)
x l a b e l = p l t . x l a b e l (’ Time [EDT] ’)
p l t . x t i c k s (r o t a t i o n =60 , ha=” r i g h t ”)
l g d = ax . l e g e n d (b b o x t o a n c h o r = (1 . 0 1 , 1) , l o c = ’ uppe r l e f t ’)
p l t . x t i c k s (x a x i s l a b e l s)
p l t . s a v e f i g (f i g s a v e p a t h + ’ RH avg . pdf ’ , f o r m a t = ’ pdf ’ , b b o x e x t r a a r t i s t s =(lgd ,

x l a b e l) , b b o x i n c h e s = ’ t i g h t ’)
p l t . show ()

162

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Symbols
	Greek Symbols
	List of Appendices
	Introduction
	Literature Review
	Omniwheel Robots
	Controllers
	Mobile Indoor Environmental Sensing
	Path Planning
	Environmental Mapping
	Thermal Comfort

	Research Gaps
	Objectives
	Structure of the Thesis

	Background
	Controllers
	PID Controller
	Feedback Linearization
	Sliding Mode Control

	Environmental Variables
	Environment Specific Variables
	Integral Time Scale

	PMV-PPD Model

	Platform Development
	System Components
	Mechanical Subsystem
	Robot Frame
	Wheel Drive
	Levels

	Electrical Subsystem
	Power Delivery
	12V DC Buck Converter
	3.3/5V Linear Regulators

	Control System
	Motor Driver Board

	Sensory Subsystem
	Ultra-Sonic Anemometer
	Relative Humidity and Temperature Sensor
	CR6 Data-logger

	Control Design
	Kinematic and Dynamic Models
	Kinematic Model
	Motor Dynamics

	Controllers
	Feedback linearization
	Sliding Mode Control
	PID Controller for Motors

	Physical Parameters
	Controller Verification
	Drift Compensation
	Rose Trajectory
	Random points

	Environmental Analysis
	Experimental Set-up
	Datalogger and Instrument Set-up
	Path Planning
	Experiment

	Data Processing
	Results
	Averages
	Variances and Covariances

	Thermal Comfort
	Platform viability

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Chapter 3 Supplement
	Electrical Schematics

	Chapter 4 Supplement
	Sliding Mode Controller - Teensy Code
	Feedback Linearization Controller - Teensy Code
	Vicon Data Collection - Matlab Code

	Chapter 7 Supplement
	Covariances
	Wiring Diagrams
	Codes
	Trajectory_Stitch.py
	Position_CR6_Joiner.py
	YOUNG81000_HMP60_10Hz.CR6
	Analysis.py

