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Abstract—Various state estimation strategies are investigated
using a kinematic model of a four-wheel holonomic robot with
Swedish wheels. A multi-tiered filtering strategy is implemented
using Kalman Filters (KF) developed to estimate wheel velocity
with an Extended Kalman Filter (EKF) and a Smooth Variable
Structure Filter (SVSF) developed for state estimation of the
robot. The use of only KFs on the wheels, only EKF or SVSF
on the robot, and KFs on the wheels with either an EKF or
SVSF on the robot is tested. Simulation results show that using
a KF on each wheel in conjunction with either a SVSF or EKF
on the robot yields an order of magnitude better state estimation
compared to other configurations allowing for increased control
of the robot.

Index Terms—omnidirectional, encoders, estimation theory,
Kalman filtering, SVSF

I. INTRODUCTION

Holonomic omniwheel robots allow for high maneuverability
in a variety of environments. In order to be fully autonomous,
however, it is necessary to have a method of accurately
measuring position which can be fed into a controller. When
attempting to control land-based mobile robots, the position
and velocity of the robot’s center of mass are often required.
State determination uses sensors that inevitably inject noise
into the system, such as through imperfect sensing and
robot slippage. Various filtering techniques can be applied
to improve the accuracy of state estimation.

A. Omniwheel Robots

Omniwheel robots use wheels with rollers attached at an
angle from the wheel’s plane [1]. By correctly configuring the
wheels, the robot becomes holonomic, enabling control of all
degrees of freedom. The two main types of omnidirectional
wheels are the Mechanum wheel with roller positions at 45
degrees to the wheel’s plane; and Swedish wheels with roller
positions at 90 degrees to the wheel’s plane.

Robot designs incorporating mechanum omniwheels often
utilize a standard four-wheeled vehicle with the rollers of
inline wheels facing opposite directions [1] [2]. The con-
figuration enables smoother rolling and, subsequently, a less
complicated control problem. Additionally, the robot’s con-
ventional design enables the ability to form trains so multiple

robots can work together to accomplish tasks impossible for
an individual robot [3].

Contrary to mechanum wheels, 90-degree Swedish wheels
avoid this efficiency problem as the force vector acts like
that of the conventional wheel [4]. In order to obtain a
holonomic robot, the wheels are positioned radially about the
robot, typically in three-wheel or four-wheel configurations.
The disadvantage of using Swedish wheels is an increase
in vibrations and slippage due to the roller design [5] [6],
creating avoidable non-linearities and injecting noise in the
system, which must be accounted for when designing a
controller [4].

B. State Estimation

Maintaining high accuracy measurements of the robot state
observables are essential for controlling sophisticated robotic
systems [7]. These states are typically velocity of the robot’s
center of mass, angular velocity of each robot wheel, or the
torque each wheel is applying [5].

Encoders operate by counting the number of times a wheel
spins, typically using either a hall effect sensor or an optical
sensor. By measuring the number of encoder state changes -
also referred to as ticks - over a known duration, angular
position and velocity measurements can be input into a
controller [8].

Integrating encoder measurements have the known issue
of error accumulation. Rapid, constant stream of pulses from
each encoder creates a potential for information-loss, inject-
ing noise into the system when recursive processes depend
on the uncertain measurement [8]. Experimental techniques
enable velocity estimation as a function of measured ticks in
a given period and measurement variance [9].

Encoders are limited to measuring the angular velocity of
the corresponding wheel, causing undetected motion from
slip [7]. Under the ideal rolling condition, this is not a
problem since the tangential velocity of the wheel is found
using v = r×ω [10]. As the system has no way of detecting
robot slip, there is a deviation from the calculated and real
position [11]. Slippage effects can be controlled by applying
artificial constraints on accelerations, but determining the
acceptable acceleration threshold is a challenging task and
slip cannot be eliminated [7].
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C. Filtering Techniques

It is common practice to apply KFs to encoder output
signals to minimize unwanted behaviours [4]. Filtering be-
comes essential when the system model of the robot relies
on accurate knowledge of each wheel’s angular velocity,
as errors propagate and accumulate, leading to inaccurate
estimates [7]. Previous work shows that the use of a Kalman
filter (KF) for encoders can increase the accuracy of position
estimation up to three times, and velocity estimation up to
two orders of magnitude [12]. When filtering the encoder, it is
advantageous to apply an adaptive KF based on the smallest
interval the encoder can measure in order to improve accuracy
during slow rotations [13] [14].

Work has been done on omniwheel robots using both
Swedish and mechanum style wheels, showing that the use of
an extended Kalman filter (EKF) can provide acceptable state
estimation without explicitly accounting for error introduced
by the motors. Research also shows the use of a UKF on
omniwheel robots provides worse estimation than an EKF
[15]. The majority of research has focused on the use of
sensor fusion often involving encoders and some form of
vision, however, there is little research in state estimation
using only encoders on omniwheel robots.

The smooth variable structure filter (SVSF) is a filtering
strategy based on the concept of a sliding mode allowing the
filter to be more robust than the EKF or UKF. The SVSF
utilizes a smoothing boundary layer in order to calculate the
covariance in contrast to the gains used in KFs, EKFs, and
UKFs. The SVSF is able to be applied to both linear and
non-linear systems, however, for this research the SVSF will
be applied only to the non-linear robot kinematics [16]. The
SVSF has not been applied to omniwheel robots in the past.

II. SYSTEM DESCRIPTION

In order to develop filters, a system model must be defined.
As such, this paper develops a dynamic model of the motors
and a kinematic model of the omniwheel robot.

A. Motor Dynamics

The motor dynamics can be described based on Newton’s
second law and Kirchhoff’s voltage law, as seen in (1) and
(2), respectively.

Jθ̈ + bθ̇ = Ki (1)

L
di

dt
+Ri = V −Kθ̇ (2)

where:
• J is the motor moment of inertia
• b is the motor viscous friction
• K is the motor torque constant
• i is the motor current
• L is the motor inductance

• R is the motor resistance
• V is the motor voltage
• θ̇ is the angular velocity of the motor shaft about the

shaft axis
From these equations the full dynamics can be written out

in (3) using the observer shown in (4).

d

dt

[
θ̇
i

]
=

⎡⎣− b
J

K
J

−K
L −R

L

⎤⎦[θ̇
i

]
+

[
0
1
L

]
V (3)

zmotor =
[
1 0

] [θ̇
i

]
(4)

where zmotor is the measurement vector.

B. Omniwheel Robot Kinematics

One way to describe an omniwheel robot is using its
kinematics, starting with the constraint on Swedish wheels
during ideal rolling, described in (5).

⎡⎣ sin (αi)
− cos (α+ β + γ)
−l cos (β + γ)

⎤⎦T

R (θ) ξ̇I − rφ̇ cos γ = 0 (5)

where:
• α is the angle between the wheel center and robot

positive x-axis
• β is the mount angle of the wheel with respect to α
• γ is the angle between rollers and wheel plane
• l is the distance from the robot’s center of mass to the

wheel center
• R (θ) is a rotation matrix (6)
• ξ̇I is the state velocities in the global frame (7)
• r is the wheel radius
• φ̇ is the angular velocity of the wheel
Fig. 1 displays the coordinates in terms of the robot’s frame

of reference.

R (θ) =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦ (6)

ξ̇I =
[
ẋ ẏ θ̇

]T
(7)

Using (5) and the robot geometry, the kinematics can be
derived. The wheel model used for simulations are standard
90 degree Swedish wheels, meaning γ = 0, and due to radial
mounting, β = 0. For each wheel i the constraint simplifies
to (8). ⎡⎣ sinαi

− cosαi

−l

⎤⎦T

R (θ) ξ̇I − rφ̇i = 0 (8)
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Fig. 1: Coordinate diagram of 4-wheel drive omniwheel robot

where αi =
2iπ−π

4 for i = 1...4. Making the substitution the
kinematics of the robot in a global frame are described by
(9).

u =

⎡⎢⎢⎣
φ̇1
φ̇2
φ̇3
φ̇4

⎤⎥⎥⎦ =
1

r
B (θ) ξ̇I (9)

B (θ) =

√
2

2

⎡⎢⎢⎣
cos θ + sin θ − cos θ + sin θ l
cos θ − sin θ cos θ + sin θ l
− cos θ − sin θ cos θ − sin θ l
− cos θ + sin θ − cos θ − sin θ l

⎤⎥⎥⎦
(10)

where u contains the inputs for the system. For control system
development, it is more useful to use the inverse kinematic
model, described by (11).

ξ̇I = B−1
(θ) (r · u) (11)

The inverse kinematic model is then transformed into
discrete-time, as it is convenient to implement both con-
trollers and Bayesian filters in discrete-time. The discrete-
time form of the inverse kinematic model takes the form:

ξIk+1
= ξIk + B−1

(θ)k (r · uk+1) · T (12)

where k denotes the current time step, and T denotes the
length of each time step.

III. FILTERING STRATEGY

Several different filters enable determination of the robot
position to varying degrees of accuracy. A KF is applied
to the output from the encoders to gain more accurate
measurements of the motors angular velocities. This filtered
data is input to the kinematic model of the omniwheel robot,
where an EKF or SVSF is applied to adjust for any additional

noise and give a more accurate position measurement. This
filtering strategy is displayed in Fig. 2b. For comparison, the
EKF, SVSF are used on the unfiltered encoder inputs as seen
in Fig. 2c, and the position of the robot is determined using
only the filtered encoder inputs, shown in Fig. 2a.

A. Motor Kalman Filter
In order to reduce complexity, it makes sense to have a

single filter that applies to all four motors simultaneously. In
order to do this we simply combine the motor dynamics from
(3) and (4) and include noise terms in a standard state-space
equation described in (13).

xk+1 = (Am + I)xk + (BmVk +wk)T (13)
zk+1 = Cmxk+1 + vk (14)

x =
[
θ̇1 i1 θ̇2 i2 θ̇3 i3 θ̇4 i4

]T
(15)

Am = diag

([
− b

J
K
J

−K
L −R

L

][
− b

J
K
J

−K
L −R

L

]
[
− b

J
K
J

−K
L −R

L

][
− b

J
K
J

−K
L −R

L

]) (16)

Bm = diag
([
0 1

L 0 1
L 0 1

L 0 1
L

])
(17)

V =
[
V1 V2 V3 V4

]T
(18)

Cm = diag
([
1 0

] [
1 0

] [
1 0

] [
1 0

])
(19)

where wk is a vector for each motors input noise defined
as wk = N (0,Qk) with Qk being the input noise co-
variance matrix, v is a vector composed of the measurement
noise for each motor defined as vk = N (0,Rk) with Rk

being the measurement noise co-variance matrix, and T is
the time step of the system. Implementation of the Kalman
filter was completed in a standard form, using a time update
and a measurement update defined in (20)-(21) and (22)-(24)
respectively.

x̂k+1|k = Amx̂k|k (20)

Pk+1|k = AmPk|kAT
m +Q (21)

x̂k+1|k+1 = x̂k+1|k +Kk+1[zk+1 −Cm

(
x̂k+1|k

)
] (22)

Kk+1 = Pk+1|kCT
m

[
CmPk+1|kCT

m +R
]

(23)
Pk+1|k+1 = (I−Kk+1Cm)Pk+1|k (24)

where x̂k+1|k+1 is the estimation of the state vector, x̂k+1|k
is the prediction of the state vector, Kk+1 is the Kalman
gain, Pk+1|k is the prediction of the error covariance, and
Pk+1|k+1 is the updated error co-variance.
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(a) (b) (c)

Fig. 2: Structures of each filtering strategy where (a) depicts using only KFs on each wheel and no filter on the robot, (b) depicts KFs on each wheel and
either an EKF or SVSF on the robot, and (c) depicts using only an EKF or SVSF on the robot

B. Extended Kalman Filter for the Robot

While the KF is sufficient for estimation of the motors,
the non-linearity of the omniwheel kinematics would cause a
KF to be insufficient. An alternative implementation is with
an EKF, using both the non-linear and linearized kinematics.
First the discrete version of the system from (12) is redefined
and non-linear functions are created shown in (25)-(28).

xk+1 = f (xk, uk+1) +wk+1 (25)
zk+1 = h (xk+1) + vk+1 (26)

f (xk, uk+1) = ξIi + B−1
(θ)i (r · ui+1 + vsi) · T (27)

h (xk+1) = xk+1 (28)

With the state-space kinematics redefined in terms of non-
linear functions the EKF can be applied. The method first
predicts the state and then updates the state estimates as seen
in equations (29)-(30) and (31)-(35) respectively.

x̂k+1|k = f
(
x̂k|k, uk+1

)
(29)

Pk+1|k = Fk+1Pk|kFT
k+1 +Qk+1 (30)

ỹk+1 = zk+1 − h
(
x̂k+1|k

)
(31)

Sk+1 = Hk+1Pk+1|kHT
k+1 +Rk+1 (32)

Kk+1 = Pk+1|kHT
k+1S

−1

k+1 (33)
x̂k+1|k+1 = x̂k+1|k +Kk+1ỹk+1 (34)
Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k (35)

Where x̂k+1|k is the predicted state estimate, Pk+1|k is
the predicted covariance estimate, ỹk+1 is the innovation
residual, Sk+1 is the innovation covariance, Kk+1 is the near
optimal Kalman gain, x̂k+1|k+1 is the updated state estimate,
Pk+1|k+1 is the updated covariance estimate, Fk+1 is the
Jacobian of f defined in (36), and Hk+1 is the Jacobian of
h defined in (37).

Fk+1 =
∂f

∂x

∣∣∣∣
x̂k|k,uk

(36)

Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k

(37)

C. Smooth Variable Structure Filter for the Robot

Another method of estimating the state of a non-linear
system is the SVSF. The SVSF begins by using the predicted
state estimates, predicted measurements, and measurement
error to calculate the SVSF gain, as shown in (38)-(41)
respectively.

x̂k+1|k = f̂
(
x̂k|k,uk

)
(38)

x̂k+1|k = Cx̂k+1|k (39)
ez,k+1|k = zk+1 − ẑk+1|k (40)

KSV SF
k+1 = C+

(∣∣ez,k+1|k
∣∣
Abs

+ γ
∣∣ez,k|k∣∣Abs

)(ez,k+1|k
ψ

)
(41)

Where γ is the convergence rate, and ψ is the smoothing
boundary layer widths. The SVSF gain is used to refine the
state estimate after which the measurement and error are
updated, as shown in (42)-(44):

x̂k+1|k+1 = x̂k+1|k +KSV SF
k+1 (42)

x̂k+1|k+1 = Cx̂k+1|k+1 (43)
ez,k+1|k+1 = zk+1 − ẑk+1|k+1 (44)

IV. SIMULATIONS

All of the simulations result from MATLAB and compare
the following six filters:

• No filters applied
• KFs on motors
• EKF on robot
• SVSF on robot
• EKF on robot and KFs on motors
• SVSF on robot and KFs on motors
The robot follows an arbitrary path defined in (51) allowing

for long simulations without repeating the same path multiple
time.

Several physical constants must be defined and input to
the kinematic and dynamic models. These values are listed
in Table I. The values for the robot kinematics are distances
measured using a set of calipers. The values for the motor
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TABLE I
LIST OF PHYSICAL CONSTANTS NEEDED TO DESCRIBE SYSTEM

KINEMATICS AND DYNAMICS

Variable Symbol Value Units

Wheel radius r 3.275 cm
Robot Radius l 19.5 cm
Motor Resistance R 1 Ω
Motor Inductance L 0.01 H
Motor Moment of Inertia J 0.01 N ·m2

Motor Viscous Friction b 0.1 N ·m · s
Motor Constant K 0.01 N ·m/A
Time step T 0.02 s

dynamics were determined experimentally using a multi-
meter, oscilloscope, NE555 based wave generator, and a
Maxwell bridge. The γ and ψ terms were tuned manually
and are shown in (45) and (46). The input and measurement
noise covariances of each motor are defined in (47) and
(48), and the robot’s covariances are defined in (49) and (50)
respectively. Both cases assume noise to be dependent only
on the respective state resulting in diagonal matrices.

γ = 0.5 (45)

ψ =
[
1.1× 10−4 0.4× 10−4 0.5× 10−4

]
(46)

Qmotor =

[
10 0
0 0.5

]
(47)

Rmotor =
[
0.01

]
(48)

Qrobot = diag(10−3, 10−3, 10−3) (49)

Rrobot = diag(10−9, 10−9, 10−9) (50)

A. Results

The robot follows a reference trajectory defined using
the motor input voltages, as seen in (51) for 600 seconds.
Simulations were run 300 times, with the resulting state
RMSE for each filter displayed in table II.

u = 12

⎡⎢⎢⎣
sin
(

π
10 t
)

cos
(
π
5 t
)

− sin
(

π
10 t
)

− cos
(
π
5 t
)
⎤⎥⎥⎦+ sin

( π
20
t
)
cos
( π
20
t
)

(51)

The results show that using only KFs on the wheels gives
some increase in estimation accuracy over having no filter.
The use of an SVSF or EKF with no filtering performed
on the wheels, however, results in a doubling of estimation
accuracy. The EKF and SVSF show near-identical perfor-
mance, with the SVSF being slightly more accurate. Using
KFs on the wheels in conjunction with either an SVSF or
EKF decreases the RMSE two-fold with an average accuracy

TABLE II
AVERAGE STATE RMSES OVER 300 TEST RUNS USING THE PATH

DESCRIBED IN (51) OVER 600 SECONDS

Filter x RMSE (cm) y RMSE (cm) θ RMSE (rad)

No Filter 10.02 11.83 0.0869
KF 9.28 10.98 0.0719
EKF 4.63 5.89 0.0511
SVSF 4.63 5.88 0.0511
KF+EKF 1.63 1.98 0.0168
KF+SVSF 1.63 1.97 0.0168

Fig. 3: Estimates of the robot’s angular position over the course of a 20
second path using each filter combinations

of below 2 cm. Once again, the EKF and SVSF show near-
identical performance.

Results from running the robot using (51) for 20 seconds
can be seen in Fig. 3 and Fig. 4. The error in the x-position
estimate, defined in Fig. 5, clearly shows the KF+EKF and
KF+SVSF filters accumulate the least error and, therefore,
will cause the least drift. Minimizing error is crucial since the
estimates are fed into a controller in order to accurately move
the robot. Over 30 minutes, the robot drifts approximately
20 cm when using the best filtering strategy and over a
meter when using no filtering strategy. These results show
the necessity of using high accuracy filters when running a
robot over long trajectories.

V. CONCLUSION

Using encoders on each wheel enables robot position esti-
mation using the dynamic and kinematic models described.
The implementation of filtering strategies shows distinct
improvement in the accuracy of position estimation. Using
KFs on each wheel without further filtering allows for in-
creased accuracy of the robot’s position, but with an RMSE
of approximately 10 cm. Such low accuracy would cause
controllers to have difficulty in accurately moving the robot
along some desired path. Using an EKF or SVSF on the robot
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Fig. 4: Estimates of the robot’s position over the course of a 20 second path
using each filter combinations

Fig. 5: X position RMSE at all timesteps for the robot following the path
in (51)

shows estimation improvements by a factor of two, however,
the best filtering strategy is found to be making use of an EKF
or SVSF on the system with KFs on wheels. This result is
confirmed by significantly lower estimation drift compared
to other filtering strategies.
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