
Investigation of Real-Time Task Scheduling on
Robot Fleets with Reconfigurable Actuators

Trevor Robin Smith†
Department of Engineering Physics

McMaster University

Hamilton, Canada

Email: tsmith@ieee.org

Spencer Ploeger†
School of Engineering

University of Guelph

Guelph, Canada

Email: sploeger@ieee.org

Benjamin Dyer
School of Engineering

University of Guelph

Guelph, Canada

Email: dyerb@uoguelph.ca

†Equal contribution authors.

Abstract—Multi-Fleet Scheduling (MFS) is concerned with the
issue of assigning tasks to a swarm of mobile robotic agents.
In this paper, MFS of tasks using a novel class of mobile agents
with reconfigurable modular actuators is proposed and analyzed.
MFS is split into two regimes, static and dynamic, where the
static regime does not allow real-time reconfiguration of agent
actuators. Most pre-existing robotic agents are compatible with
the static multi-fleet scheduling (S-MFS) regime, whereas the
novel agents being investigated here are capable of using dynamic
multi-fleet scheduling (D-MFS). Solutions to both problems are
compared, and it is shown that in the worst case scenario, given
some set of agents and tasks available at known start times, D-
MFS finds the same optimal schedule as S-MFS, whereas D-MFS
can be used to find more optimal solutions in some conditions. It
is also shown that D-MFS may not always be optimal depending
on the arrival of previously unknown a-periodic tasks, as D-
MFS provides the optimal schedule for a specific fleet of robots
accomplishing a set of tasks for some scheduling algorithm and
cost function. By defining and exploring the D-MFS problem,
this work paves the way for future investigations in task-
prediction, efficient large-scale scheduling algorithms, and novel
robot manufacturing capabilities.

Index Terms—systems, scheduling, multi-fleet, reconfigurable,
actuators, end-effectors

I. INTRODUCTION

Adaptive manufacturing practices provide companies the

flexibility to rapidly react to volatility in market conditions,

workforce size, and other important decision-making factors.

Such practices are often restricted by incompatibility with

existing infrastructure as not all machines can easily be re-

purposed in real-time. One approach to achieving flexible man-

ufacturing processes is implementing a fleet of reconfigurable

robotic agents [1]. This work explores scheduling tasks for

such a fleet, with and without the ability to change actuators

in real-time for potentially faster task completion.

This work contributes to literature by highlighting a novel

method to schedule fleets of mobile, reconfigurable agents

through the reformulation of Multi-Fleet Scheduling (MFS)

into two different regimes (static-MFS and dynamic-MFS), the

development of preliminary methods to solve both problems,

and insight towards further potential improvements. Previ-

ous research in fleet-scheduling and agile robotics are first

discussed. A model for an agent is defined and real-time

fleet scheduling is formulated as an optimization problem.

A scheme for finding the optimal solution given some cost

function and scheduling algorithm is found and a simulation

use-case is shown to highlight potential advantages of D-

MFS. While previous research has studied task-scheduling for

a fleet of mobile robots, to the best knowledge of the authors,

this is the first to investigate the scheduling of agents which

can change their functionality in real-time through switching

actuators.

II. LITERATURE REVIEW

A. Agile Robotics

The authors of [1] propose a complete solution for modular

end-effector robots and matching docking stations to facilitate

the exchange of end-effectors and charging. This solution is

an ideal platform for investigating task scheduling in mobile,

reconfigurable agents as it provides the essential building

blocks for agile manufacturing processes. The focus of the

aforementioned work was on the design of the modular end-

effectors and docking stations. Task-scheduling in [1] was

beyond the scope of the work, thus a First-In-First-Out (FIFO)

priority queue was used for scheduling. This leaves significant

opportunities to develop frameworks and algorithms for ef-

ficient scheduling of such robots in an agile manufacturing

environment, as existing methods do not fully utilize the

design flexibility.

B. Scheduling

To effectively utilize fleets of mobile agents, efficient

scheduling algorithms must exist to find optimal task-

schedules in real-time. Although the class of agents discussed

in this work are novel - and as such, scheduling algorithms

have not been investigated previously - significant work has

been done in fleet-scheduling and scheduling in general.

Real-world scheduling problems are found in situations

such as work force management and mobile robot fulfillment

systems (MRFS). Many large distribution centers such as

Amazon and Alibaba use MRFS in order to lift movable

racks and transport them to work stations [2]. The use of

MRFS as a warehousing system has been investigated using

queuing models and was shown to be effective in a variety of

978-1-6654-4439-2/21/$31.00 ©2021 IEEE

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 S
y
st

em
s

C
o
n
fe

re
n
ce

 (
S

y
sC

o
n
)

| 9
7
8
-1

-6
6
5
4
-4

4
3
9
-2

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/S

y
sC

o
n
4
8
6
2
8
.2

0
2
1
.9

4
4
7
1
3
4

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:40:29 UTC from IEEE Xplore. Restrictions apply.

workshop sizes and shapes [3]. Task scheduling can be applied

to the service industries such as banks, police departments, fast

food, and airport ground stations through the use of personnel

cross-training in order to increase workforce flexibility [4].

Through the use of task scheduling, adaptive manufacturing

processes can be investigated and implemented on large scale.

Meng et. al. developed distributed flexible job shop schedul-

ing processes (DFJSP) in order to represent a multi-factory

environment in which each factory acts as a flexible job shop

capable of changing tasks, while each task is given to exactly

one factory [5].

A subset of scheduling research focuses specifically on

fleet scheduling. Work by Li et. al. investigated multistage

heterogeneous fleet scheduling while considering the size

of the fleets that could be scheduled [6]. In doing so the

scheduler is capable of integrating vehicle allocation and fleet

size while considering the routing of the fleet and the fleet

vehicle types. Nag et. al. developed schedule optimization for

earth observations using a constellation of orbiting Cubesats.

Through the use of optimal scheduling cubesats can be made

to quickly and effectively make measurements at short notice

while considering cloud cover predictions, ground down-link

windows, or any other positional or temporal constraints on

each Cubesat [7].

Xidias et. al. investigated an approach for task scheduling

a fleet of vehicles in a factory environment. Their approach

focused on representing the environment using a single math-

ematical entity which could then be combined with path plan-

ning and task scheduling to create an optimization problem

[8]. The near optimal solution was found using a modified

Genetic Algorithm in order to attain safe, efficient, and feasible

paths for the fleet to follow while maintaining a desired work

rate. Kousi et. al. also focused on the intra-factory environ-

ment developing a service-based control system executed by

autonomous mobile units capable of transporting consumables

from a warehouse to production stations [9]. de Matta et. al.

developed work schedules for an inter-city transit system. In

order to meet the daily service requirements of an inter-city

bus transit firm, the best mix of primary and secondary jobs

in short term work schedules utilizing multiple fleet types was

investigated resulting in a larger solution space with potentially

more optimal results [10].

III. PROBLEM FORMULATION

In this section, the problem of flexible multi-fleet scheduling

is explored and a framework is developed for initial investi-

gation into the problem. An agent is a robot available as a

resource to accomplish tasks in some defined environment.

Building upon the design introduced in [1], agents are mod-

elled as robots with interchangeable actuators using docking

stations that dual as actuator storage.

The set of robots organized in a fleet, F , is defined as a list

of n sets, where there are n− 1 different actuator types. Each

element of the list stores the robot list of a particular type,

called sub-fleet i or Fi, where the ith element corresponds

to the set of agents with actuators of type i and sub-fleet F0

corresponds to the set of agents without actuators. A task, τj ,

is a single command that can be interpreted by a robotic agent,

Rk - the kth agent in a fleet, such that Rk can autonomously

complete τj given adequate available resources. Using a user-

defined cost function, C(Rk, τj), the cost of Rk completing

τj can be determined.

Scheduling a set of tasks, denoted with τ , is not a trivial

task. If Fi is the sub-fleet corresponding to the necessary

actuator type for completing τj , the optimal available agent

in sub-fleet Fi can be assigned the task such that Rk =

min{C(Fi, τj)}, where Rk is the optimal agent belonging to

Fi. In this work, the approach mentioned previously will be

referred to as Static-MFS, as the solution set is locally bounded

to the Fi sub-fleet due to the static configuration of agent

actuators. A classical Static-MFS algorithm is shown by Algo-

rithm 1. In the event that min{C(F, τj)} �= min{C(Fi, τj)},

expanding the search to include the global set F can yield

more satisfactory results. Typically, such global searches are

redundant if actuators are not re-configurable, as the task could

not be accomplished with any amount of time unless the agent

were to be initially configured with the required actuator. This

leads to the introduction of a novel problem - Dynamic-MFS.

A. Dynamic-MFS Problem

The Dynamic-MFS problem can be formulated as follows:

Given some set of tasks, τ , where τ = {τ1, τ2, ..., τk}, find

some efficient schedule that satisfies all elements of τ such

that ΣC(τi) is minimized. The differences between the static

and dynamic regimes lie in the system constraints.

Constraints are imposed through a user-defined cost func-

tion. In the S-MFS regime, any agent without a task-

compatible actuator is equivalent to having an infinite cost

of completion. This makes it computationally redundant to

search the entire fleet when looking for an optimal agent, as all

agents excluded from the task-compatible sub-fleet will never

be optimal - in the static regime all non-compatible actuator

agents would have an infinite cost of completion. In the D-

MFS regime, any agent can complete any task at the expense

of a more complex cost function that incorporates a penalty

for changing actuator types at a docking station. Assuming

identical conditions at scheduling, the D-MFS will at worst

find the same solution as the S-MFS, as the static regime’s

solution-space is a subspace of the dynamic regime’s solution-

space.

Although D-MFS has potentially many more solutions than

it’s static counterpart, finding these solutions is a challenging

task. Solving the problem by brute-force can work on small-

scale systems, but checking all possible schedule combinations

may not be feasible if the number of agents in the sub-fleet is

magnitudes less than that of the global fleet. For D-MFS to be

feasible on the large-scale, efficient methods for optimizing

agents on the large-scale must be investigated, developed

and tested. This provides motivations for future work on the

subject.

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:40:29 UTC from IEEE Xplore. Restrictions apply.

IV. SOLUTION FOR DYNAMIC-MFS

A heuristic method has been developed (see Algorithm

2) to utilize the modular end-effectors for switching agents

between sub-fleets in real-time, allowing for more optimal

fleet scheduling in some cases. Additionally, the worst case

scenario of the proposed method yields the equivalent result to

the S-MFS solution. An example that illustrates this situation

is when a task requiring a specific actuator-type arrives but

there are no available agents.

In a static fleet, a task cannot be scheduled if no agents

belonging to the corresponding sub-fleet are available. In this

case, the task is scheduled to the agent in the sub-fleet that can

complete the task fastest after completing their current task.

This is the fastest solution if agents cannot be reconfigured,

however, with reconfigurable agents, D-MFS may find a more

optimal solution by expanding the agents being searched. The

decision process for static fleets can be seen in Figure 1.

Fig. 1. Flowchart Static-MFS

A dynamic fleet uses the same scheduler as static fleets,

but differs in cost function. Static regime cost functions yield

infinite cost for agents with incompatible actuators, whereas

the dynamic regime uses a cost proportional to the time

required to change actuators. This means that every agent Ri

in the fleet F is evaluated in determining scheduling of tasks,

regardless of whether they possess the necessary actuator. In

the event that the optimal agent is not in the sub-fleet of

actuator-type required by the task, the optimal agent moves

to the docking station, switches actuators to that required of

the task, and performs the task. This only occurs when the

cost algorithm determines an actuator-change is optimal rather

than waiting for an already-configured agent to complete the

task, as the algorithms are identical except S-MFS is a local

search of D-MFS. This algorithm capitalizes on robots that

would otherwise sit idle by switching their actuator in order

to complete tasks in a way to minimize total cost of the system.

The decision process for dynamic fleets can be seen in Figure

2.

Fig. 2. Flowchart Dynamic-MFS

V. RESULTS

Two different sets of tasks, displayed in Tables I and II,

have been simulated to highlight the potential effects of using

S-MFS and D-MFS in the fixed environment in Figure 3.

A simple cost function based on time was used, where

C(Rk, τi) = Cswitch + Cmove + Ctask. Agent motion is

modelled as ideal straight paths with a cost of 1 unit distance

per unit time (Cmove = distance units), and the cost to change

actuators was fixed to 3 time units (Cswitch = 3 units).

Fig. 3. Robot environment used for simulations

Task Number T1 T2 T3 T4 T5
Time of Arrival 0 0 15 35 40
Actuator Type A A B A B
Workstation L1 L2 L1 L2 L1
Task Duration 20 20 15 20 15

TABLE I
SET 1: LIST OF TASKS AND REQUIREMENTS

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:40:29 UTC from IEEE Xplore. Restrictions apply.

Task Number T1 T2 T3 T4 T5
Time of Arrival 0 10 25 50 60
Actuator Type A A A B B
Workstation L1 L2 L1 L2 L1
Task Duration 20 20 20 15 15

TABLE II
SET 2: LIST OF TASKS AND REQUIREMENTS

Set 1 has been chosen to highlight an important situation;

when S-MFS results in a more efficient solution than D-MFS.

This results from the fact that D-MFS can only ensure optimal

scheduling for tasks known at the time of scheduling. T3,

T4, and T5 arrive after one round of scheduling has already

occurred, however, S-MFS and D-MFS have already deviated

from one another and thus, the two different problems have

different initial conditions at t = 15, leading to D-MFS

performing worse. Set 2, contrary to Set 1, yields a faster

schedule in D-MFS, as can be seen in Table III.

This is worth noting, as it gives motivation to exploring po-

tential task-anticipation schemes for improving the reliability

of D-MFS over S-MFS. With accurate predictions - or when

dealing with periodic tasks - this is not problematic, as D-

MFS can consistently perform at worst the same as S-MFS,

but a-periodic tasks have the potential to make D-MFS perform

worse than S-MFS.

A heuristic search algorithm is displayed below to find

the optimal agent to complete a task given some fleet. This

method assesses the optimal cost agent for a task given

some fleet, as D-MFS searches all possible solutions for the

optimal schedule, not simply evaluating the schedules for sub-

fleet Fi. In this algorithm described, it is assumed that an

ideal scheduler picked a task as to be completed next, and

the algorithm must find which agent can complete the task

optimally.

Algorithm 1: Classical Static-MFS Solution

Result: Rmin in Fi for a S-MFS Task τi
Cmin = ∞ ; � Initialize as infinity
for Rk in Fi ; � Loop through all agents
of sub-fleet
do

if Rk is available; � If agent with
desired actuator is free
then

Calculate CkforRk;

if Ck < Cmin; � New current best
then

Cmin = Ck;

Rmin = Rk;

end
end

end

Algorithm 2: Preliminary Dynamic-MFS Solution

Result: Rmin in F for a D-MFS task τi
Cmin = Cwait ; � Initialize as infinity
for Rk in F ; � Loop through fleet
do

Calculate CswitchforRk;

if Cswitch < Cmin; � New current best
then

Cmin = Cswitch;

Rmin = Rk;

end
end

VI. CONCLUSION

This work reformulates the Multi-Fleet Scheduling (MFS)

problem into two different regimes: Static-MFS and Dynamic-

MFS. Static-MFS (S-MFS) is for environments where sub-

fleets of different types cannot be reconfigured, whereas in

Dynamic-MFS (D-MFS), agents can change sub-fleets. It is

shown that S-MFS is a restricted form of D-MFS, where a

single sub-fleet is searched instead of the entire fleet. This

means that, given some cost function and set of tasks with

arrival times, D-MFS will at worst find the same schedule as

S-MFS, but at best find a more optimal schedule.

It is also shown that although D-MFS yields at worst

an equivalent schedule to S-MFS, D-MFS cannot guarantee

optimal results in the event of non-predicted, a-periodic tasks.

Resulting from potentially non-identical initial conditions

when the schedule is re-calculated to include the new task,

further research is needed to investigate methods for efficiently

solving the Dynamic Multi-Fleet Scheduling problem with a-

periodic tasks.

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:40:29 UTC from IEEE Xplore. Restrictions apply.

Set 1 Set 2
Time Static Dynamic Static Dynamic

10 R1 begins T1
R1 begins T1
R2 arrives at dock

R1 begins T1 R1 begins T1

13 R2 leaves dock with A
20 R2 arrives at dock
23 R2 leaves dock with A

30 R1 completes T1 R1 completes T1 R1 completes T1
R1 completes T1
R1 begins T3

33 R2 arrives at L2 with A
R2 begins T2

37.36 R2 begins T3
43 R2 begins T2
50 R1 begins T2 R1 arrives at dock R1 begins T2 R1 completes T3

52.36 R2 completes T3
R2 begins T5

53
R1 leaves dock with B
R2 completes T2
R2 begins T4

60 R2 arrives at L2
R2 waits

63 R2 completes T2
67.36 R2 completes T5

70 R1 completes T2
R1 begins T4

R1 completes T2
R2 begins T4

R1 arrives at dock

73 R1 begins T3
R2 completes T4

R1 leaves dock with B

83 R2 arrives at dock
85 R2 completes T4
86 R2 leaves dock with B

88 R1 completes T3
R1 begins T5

90 R1 completes T4 R1 begins T3

93 R1 arrives at L1
R1 begins T5

103 R1 completes T5
105 R2 arrives at L1, waits

106 R2 arrives at L2
R2 begins T4

108 R1 completes T5

110 R1 completes T3
R2 begins T5

121 R2 completes T4
125 R2 completes T5

TABLE III
SIMULATION RESULTS FOR R1 AND R2 COMPLETING TASK SETS 1 AND 2

REFERENCES

[1] T. R. Smith, B. Thompson, J. Balfour, and A. Taher, “Modular End-
Effector on Mobile Robot with Automated Change Station,” 2020 4th
International Conference on Robotics and Automation Sciences, ICRAS
2020, pp. 34–38, 2020.

[2] W. Yuan and H. Sun, “A task scheduling problem in mobile robot
fulfillment systems,” 12th International Conference on Advanced Com-
putational Intelligence, ICACI 2020, pp. 391–396, 2020.

[3] T. Lamballais, D. Roy, and M. B. De Koster, “Estimating performance in
a Robotic Mobile Fulfillment System,” European Journal of Operational
Research, vol. 256, no. 3, pp. 976–990, 2017.

[4] E. Peters, R. de Matta, and W. Boe, “Short-term work scheduling with
job assignment flexibility for a multi-fleet transport system,” European
Journal of Operational Research, vol. 180, no. 1, pp. 82–98, 2007.

[5] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer linear
programming and constraint programming formulations for solving dis-
tributed flexible job shop scheduling problem,” Computers and Industrial
Engineering, vol. 142, no. February, p. 106347, 2020.

[6] B. Li, X. Yang, and H. Xuan, “A Hybrid Simulated Annealing Heuristic
for Multistage Heterogeneous Fleet Scheduling with Fleet Sizing Deci-
sions,” Journal of Advanced Transportation, vol. 2019, 2019.

[7] S. Nag, A. S. Li, and J. H. Merrick, “Scheduling algorithms for

rapid imaging using agile Cubesat constellations,” Advances in Space
Research, vol. 61, no. 3, pp. 891–913, 2018.

[8] E. Xidias, P. Zacharia, and A. Nearchou, “Path Planning and scheduling
for a fleet of autonomous vehicles,” Robotica, vol. 34, no. 10, pp. 2257–
2273, 2016.

[9] N. Kousi, S. Koukas, G. Michalos, and S. Makris, “Scheduling of
smart intra–factory material supply operations using mobile robots,”
International Journal of Production Research, vol. 57, no. 3, pp. 801–
814, 2019.

[10] R. de Matta and E. Peters, “Developing work schedules for an inter-
city transit system with multiple driver types and fleet types,” European
Journal of Operational Research, vol. 192, no. 3, pp. 852–865, 2009.

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:40:29 UTC from IEEE Xplore. Restrictions apply.

